Reduced Time-Expansion Graphs and Goal Decomposition for Solving Cooperative Path Finding Sub-Optimally

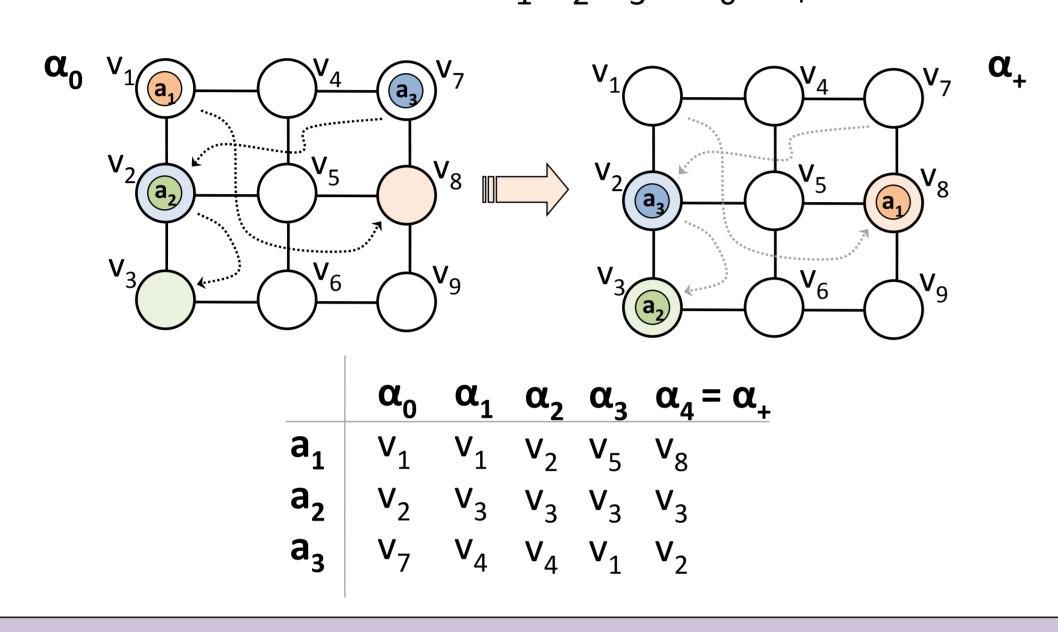
Pavel Surynek

Charles University in Prague, Czech Republic

Cooperative Path-Finding

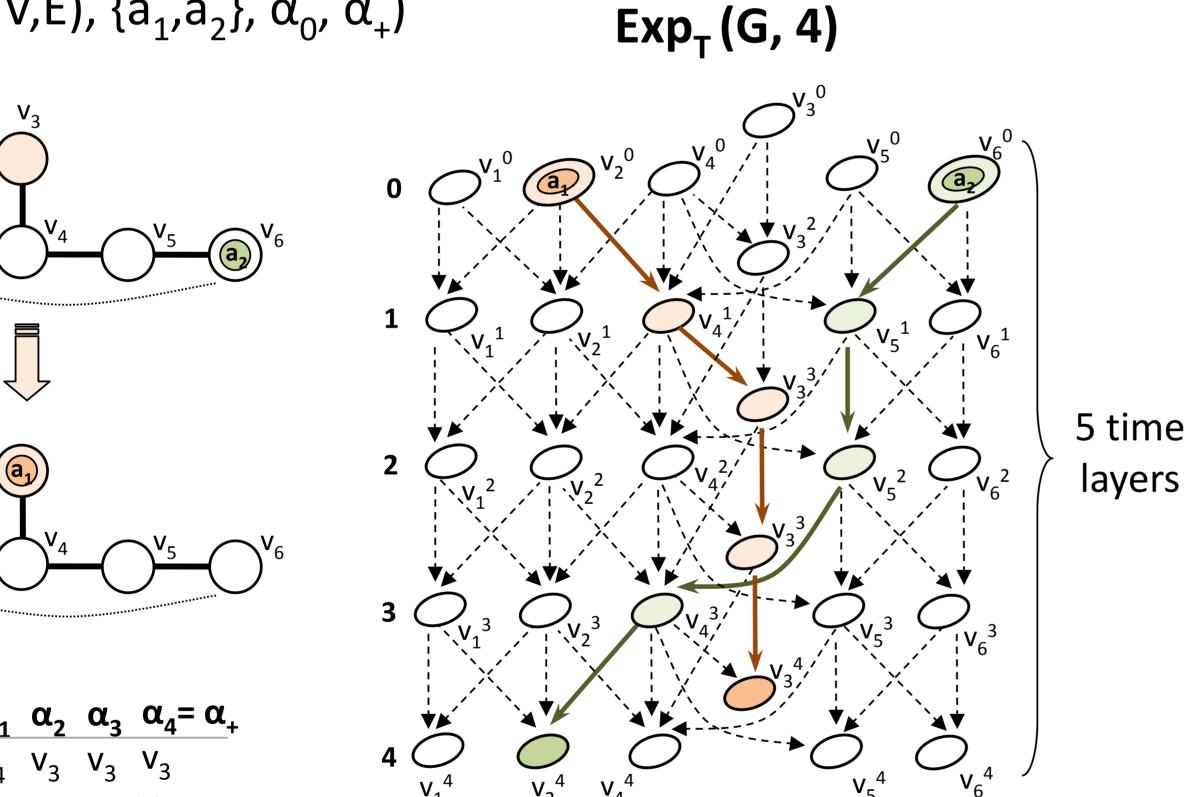
- a task to **relocate agents** to their goals in a non-colliding way
- agents move over undirected graph
 - an agent can move to unoccupied vertex

CPF
$$\Sigma = (G, \{a_1, a_2, a_3\}, \alpha_0, \alpha_+)$$



Standard Time Expansion

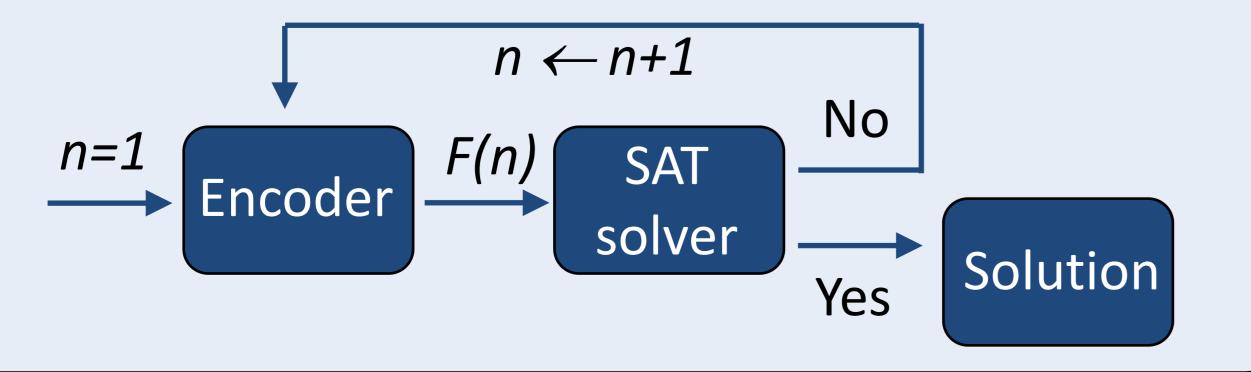
CPF $\Sigma = (G = (V,E), \{a_1,a_2\}, \alpha_0, \alpha_+)$



- the number of copies of the graph corresponds to the makespan in time expansion graph Exp_T
- the set of sources and targets for non-trivial moves must be disjoint for each consecutive layers

Reducing CPF to SAT

- expand the graph modeling the environment over time
- number of expansions n is specified
- encode relocation of agents through expanded graphs as a propositional formula F(n)
 - ask **SAT solver** whether *F(n)* is solvable



Reduced Time Expansion

 $\begin{array}{c} \text{CPF } \mathbf{\Sigma} = (\mathsf{G} = (\mathsf{V}, \mathsf{E}), \, \{ \mathsf{a}_1, \mathsf{a}_2 \}, \, \alpha_0, \, \alpha_+) \\ \mathbf{\alpha}_0 & \mathsf{V}_1 & \mathsf{V}_2 & \mathsf{V}_4 \\ \mathbf{\alpha}_1 & \mathsf{V}_2 & \mathsf{V}_6 \\ \mathbf{\alpha}_1 & \mathsf{V}_2 & \mathsf{V}_6 \\ \mathbf{\alpha}_2 & \mathsf{V}_4 & \mathsf{V}_6 \\ \mathbf{\alpha}_3 & \mathsf{V}_3 & \mathsf{V}_6 \\ \mathbf{\alpha}_4 & \mathsf{V}_3 & \mathsf{V}_5 \\ \mathbf{\alpha}_5 & \mathsf{V}_3 & \mathsf{V}_4 \\ \mathbf{\alpha}_6 & \mathsf{V}_3 & \mathsf{V}_2 \\ \mathbf{\alpha}_7 & \mathsf{V}_3 & \mathsf{V}_1 \\ \mathbf{\alpha}_8 & \mathsf{V}_4 & \mathsf{V}_1 \\ \mathbf{\alpha}_9 & \mathsf{V}_5 & \mathsf{V}_1 \\ \mathbf{\alpha}_9 & \mathsf{V}_9 & \mathsf{V}_1 \\ \mathbf{\alpha}_9 & \mathsf{$

 solution of CPF corresponds to vertex disjoint paths in reduced time expansion graph rExp_T

 $\alpha_{10} = \alpha_{+}$

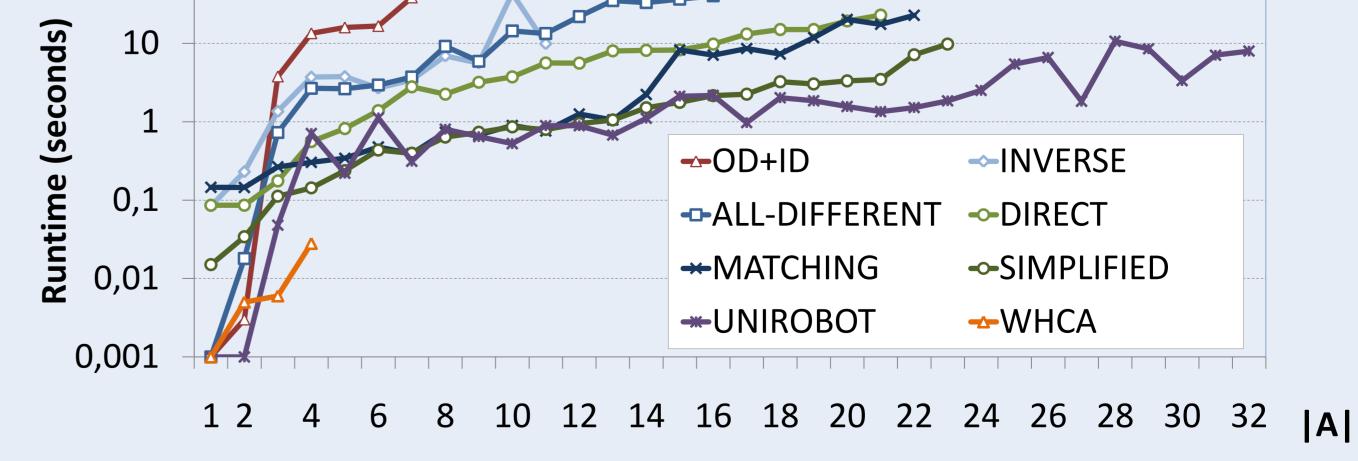
- no extra constraint except disjointness
 - easy modeling as propositional satisfiability
- produces makespan sub-optimal solution

Goal Decomposition

- place agents to their goals one by one (UniROBOT)
 - build a separate CPF for each agent placement
- initial arrangements and goals **differ little** for single agent placement
 - small number of layers in rExp_T to reach solvability
 - small SAT instances to solve

Experiments

Average runtime | Grid 8×8 | 20% obstacles



Makespa	<u>an</u> A	1	4	8	12	16	20	24	28	32
	optimal	5.3	8.4	11.0	11.7	12.4	12.3	_	_	_
_	WHCA*	5.6	9.3	_	-	_	-	-	-	_
	UniROBOT	9.3	15.8	33.0	49.3	83.4	96.1	131.4	154.1	201.7