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• Constraint satisfaction problem over the universe of 
elements 𝔻 is a triple (X,C,D)
▫ X – finite set of variables

▫ C – finite set of constraints

▫ D – is a function D:X 𝒫(𝔻)

▫ each constraint cC is a construct
of the form <(x1

c, x2
c,…, xk(c)

c),Rc>
 k(c) is arity of the constraint

 xi
cX for I = 1,2,…,k(c) and RcD(x1

c)  D(x2
c)  …  D(xk(c)

c)

• The task is to find assignment of values to variables from 
their domains such that all the constraints are satisfied
▫ or decide that no such valuation exists

• Decision variant is an NP-complete problem

example:𝔻={1,2,3}

X={a,b,c}
C={<(a,b),”<“>;

<(b,c),”=“>}
D(a)=D(b)=D(c)=𝔻

example: a=1, b=2, c=3

Constraint Satisfaction Problem (CSP)
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• A Boolean formula is given - variables can take either the 
value TRUE or FALSE

• The task is to find valuation of variables such that the 
formula is satisfied
▫ or decide that no such valuation exists

• Conjunctive normal form (CNF) - standard form of the 
input formula
▫ variables: x1,x2,x3,...
▫ literals: x1,x1,x2,x2, ... variable or its negation
▫ clauses: (x1  x2  x3) ... disjunction of literals
▫ formula: (x1  x2) (x1  x2  x3) ... conjunction of clauses

• Clauses represent constraints that must be all satisfied (can be 
regarded as CSP) – SAT and CSP are mutually reducible

example: x = TRUE
y = FALSE

example: (x  y)  (x  y)

example:
p cnf 3 2
1 -2 0
1 2 -3 0
...

Boolean Satisfiability (SAT)
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• CSP paradigm provides many types of local 
consistencies
▫ local inference is typically too weak for SAT
▫ arc-consistency, path-consistency, i,j-consistency
 insignificant gain in comparison with unit-propagation
 expensive propagation with respect to the inference 

strength

• Global consistencies (global constraints)
▫ provide strong global inference
 often leads to significant simplification of the problem

▫ application of global consistencies in SAT is quite rare

• Consistency based on structural properties
▫ interpret SAT as a graph and find graph structures

Motivation for Global Consistencies
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• SAT as CSP: Literal encoding model (X,C,D)
▫ X ... variables ↔ clauses, C ... constraints ↔ values standing for 

complementary literals are forbidden, D ... variable domains ↔ 
literals

• Interpret path-consistency in the CSP model of SAT as a 
directed graph
▫ vertices ↔ values in domains, edges ↔ allowed pairs of values

example:
X=V(x1  x2),V(x1  x2), ...

example:
D(V(x1  x2))={x1, x2}

example:
V(x1  x2) = x1 and
V(x1  x2) = x1

is forbidden

Path-consistency in Literal Encoding (1)

Pavel Surynek, 2010
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• Let us have a sequence of variables (path)
▫ pair of values is path-consistent w.r.t. to the sequence if there is an 

oriented path connecting them in the graph interpretation going 
through the sequence and values itself are connected

• Ignores constraints between non-neighboring variables in the 
sequence of variables

Path-consistency in Literal Encoding (2)
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• Deduce more information from constraints
▫ decompose values into disjoint sets (called layers ... L1, L2,..., LM)

▫ deduce more information from constraints - calculate maximum size of the 
intersection of the constructed path with individual layers – denoted as χ

• Stronger restriction on paths ► stronger propagation

Modified Path-Consistency for SAT

Pavel Surynek, 2010
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• Enforcing modified path-consistency is difficult (NP-complete)
▫ The decision problem is whether there exists a path conforming to the 

maximum number of visits in individual layers.
• Lemma: The decision variant of the problem belongs to the NP class.

▫ The path is of polynomial size with respect to the graph interpretation.
▫ It can be checked in polynomial time whether the path conforms to the 

maximum size of intersection with individual layers.
• Lemma: The existence of a Hamiltonian path in a graph is reducible 

to the existence of a path conforming to the maximum size of 
intersection with layers.

(v1,v2)(v1,v1) (v1,vn)

(v2,v2)(v2,v1) (v2,vn)
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NP-completeness of the Modified Path 
Consistency

Pavel Surynek, 2010

• Main idea of the proof: G=(V,E), where 
V={v1,v2,...,vn}
(i) Construct an instance of modified 
path consistency in the form of a 
matrix

• (ii) Associate rows of the matrix with 
layers and set the maximum size of the 
intersection to 1
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• An intersection matrix is defined for each value in the graph 
interpretation of path-consistency – it is denoted as ψ(v)

▫ Let L1, L2, …, LM be a layer decomposition of the graph 
interpretation

▫ Let K be the number of variables involved in the path

▫ ► The intersection matrix is of type M  K

• Intersection matrix ψ(v) w.r.t. a pair of values v0 and vK

▫ ψ(v)i,j represents the number of paths starting in v0 and ending 
in v that partially conforms to maximum sizes of intersection 
with layers such that they intersect with Li j-times.

• It is not possible to enforce exact conformity to 
calculated maximum sizes of intersection with layers
▫ Therefore we need to talk about partial conformity.

Intersection Matrices
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• Intersection matrix can be updated easily
▫ ψ(v) is calculated from ψ(u1), ψ(u2),…, ψ(um) where u1, 

u2,…, um are a values from the domain of the previous
variable in the path

• If it is detected that no of the paths starting in v0 and 
ending in v conforms to the maximum size of the 
intersection with the layer Li such that vLi then ψ(v) is 
set to 0 (matrix)
▫ maximum intersection sizes with other layers cannot be 

violated since intersection size with them does no change

▫ relaxation: paths that do not conform to maximum sizes of 
intersections with layers are propagated further

Intersection Matrix Calculation
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Visualization of Layers
using GraphExplorer software (Surynek, 2007-2010)
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• Layer decomposition was constructed with several most 
constrained clauses
▫ several benchmark problems from the SAT Library

hanoi4.cnf

jnh1.cnf

s3-3-3-8.cnf



SAT instance
Maximum intersection with L1=[v0, v1, v2, v3, v4, v5, v6, v7]

Χ(v0) Χ(v1) Χ(v2) Χ(v3) Χ(v4) Χ(v5) Χ(v6) Χ(v7)

ais12.cnf 1 1 1 1 1 1 1 1

hanoi4.cnf 1 2 2 3 3 3 4 4

huge.cnf 1 1 2 2 2 2 3 3

jnh1.cnf 1 2 2 3 4 4 4 5

par16-1.cnf 1 1 1 2 2 2 2 2

par16-1-c.cnf 1 2 2 3 3 4 4 5

pret150_75.cnf 1 1 2 2 3 3 4 4

s3-3-3-8.cnf 1 1 2 3 3 4 4 5

ssa7552-160.cnf 1 1 2 3 4 4 5 6

sw100-5.cnf 1 1 2 2 2 2 3 3

Urq8_5.cnf 1 1 2 2 3 3 4 4

uuf250-0100.cnf 1 1 2 2 3 3 4 4

Pavel Surynek, 2010

Maximum Intersection Sizes

• Maximum intersection size is calculated using the maximum 
intersection size for the previous value in the layer
▫ it is checked whether the intersection size can be increased by adding 

the current value
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• Comparison of the 
number of filtered pairs 
of values
▫ several benchmark problems 

from the SAT Library

▫ comparison of PC and
modified PC enforced by the 
basic variant of intersection 
matrix update algorithm

▫ on some problems modified 
PC is significantly stronger

▫ runtime was slightly higher for 
modified PC

SAT

Problem

Number of 

variables

Number of 

clauses

Pairs filtered 

by standard PC

Pairs filtered by 

modified PC

bw_large.a 495 4675 22 22

hanoi4 718 4934 9 10

huge 459 7054 12 12

jnh2 100 850 135 147

logistics.a 828 6718 192 192

medium 116 953 177 227

par8-1-c 64 254 0 19

par8-2-c 68 270 0 9

par8-3-c 75 298 0 100

par16-1-c 317 1264 0 11

par16-2-c 349 1392 0 7

par16-3-c 334 1332 0 7

ssa0432/003 435 1027 81 1598

ssa2670/130 1359 3321 4 2656

ssa2670/141 986 2315 20 8871

ssa7552/038 1501 3575 16 5652

ssa7552/158 1363 3034 49 2371

Pavel Surynek, 2010

Experimental Evaluation (1)
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• Improvement ratio
gained by 
preprocessing of SAT 
problems by modified 
PC in comparison with 
PC
▫ the number of decision 

steps was measured

▫ some problems were 
successfully preprocessed 
by modified PC

Problem #variables #clauses HaifaSat Minisat2 Rsat_1_03 zChaff

bw_large.a 459 4675 1.0 1.0 1.0 1.0

hanoi4 718 4934 1.0 1.0 1.0 1.0

hanoi5 1931 14468 1.0 1.0 1.0 1.0

huge 459 7054 1.0 1.0 1.0 1.0

jnh2 100 850 1.0 1.0 1.0 1.3

logistics.a 828 6718 1.0 1.0 1.0 1.0

medium 116 953 1.0 1.0 0.8 0.9

par8-1-c 64 254 1.0 1.0 0.9 0.7

par8-2-c 68 270 0.9 1.2 0.7 0.8

par8-3-c 75 298 0.8 1.4 0.6 0.8

par16-1-c 317 1264 0.1 0.4 2.2 0.1

par16-2-c 349 1392 1.1 2.3 0.8 0.8

par16-3-c 334 1332 0.8 1.4 6.6 1.6

ssa0432-003 435 1027 1.0 228.0 155.0 122.0

ssa2670-130 1359 3321 51.0 411.0 371.0 323.0

ssa2670-141 986 2315 289.0 429.0 455.0 489.0

ssa7552-038 1501 3575 190.0 226.0 173.0 238.0

ssa7552-158 1363 3034 114.0 129.0 151.0 312.0

Experimental Evaluation (2)
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