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Pre-processing in Boolean Satisfiability Using 

Bounded      -Consistency 

on Regions with Locally Difficult Constraint Setup 

A new type of partially global consistency derived from      -consistency called 

bounded      -consistency (B2C-consistency) is presented in this manuscript. It 

is designed for application in Boolean satisfiability (SAT) as a building block for 

a pre-processing tool. Together with the new B2C-consistency a special mechan-

ism for selecting regions of the input SAT instance with difficult constraint setup 

was also proposed. This mechanism is used to select suitable difficult sub-

problems of which simplification by the consistency can lead to the significant 

reduction of the effort needed to solve the instance. A new prototype pre-

processing tool preprocessSIGMA which is based on proposed techniques 

was implemented. As a proof of new concepts a competitive experimental eval-

uation on a set of relatively difficult SAT instances was conducted. It showed that 

our prototype pre-processor is competitive with respect to existent pre-processing 

tools LiVer, NiVer, HyPre, and Shatter. 

Keywords: SAT; CSP; SAT pre-processing; local consistency; 

global consistency;      -consistency; probability; difficult instances 

1   Introduction and Motivation 

Recent works dealing with difficult instances of Boolean Satisfiability (SAT) [1, 2, 7, 9, 

21] indicate that an intelligent pre-processing focused on the structure of the instance 

can dramatically reduce the effort needed to solve it. Technically the pre-processing 

task is done by transforming the input instance into another one (hopefully simpler) 

which is subsequently submitted to a general purpose SAT solver [7, 12]. It is crucial 

that the pre-processing step is fast enough relatively to the runtime of the SAT solver on 

the pre-processed instance. 

It this work we further develop ideas from [21] where the input Boolean formula 

is interpreted as a graph in which graph structures –  namely complete sub-graphs – are 
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identified and after some calculation involving the number and the size of complete sub-

graphs, an inference is made. The drawback of the original idea from [21] is that it re-

quires the input instance to be relatively well structured to be able identify an acceptable 

complete sub-graph decomposition. In this work we overcome this major drawback by 

two new techniques. First, a new type of consistency derived from      -consistency 

[10, 24] called bounded      -consistency with complete graphs (B2C-consistency) is 

proposed. It uses graph interpretation of a sub-problem on which reasoning over its de-

composition into complete sub-graphs is made and can be therefore regarded as a par-

tially global reasoning mechanism. Second, a new mechanism for selecting a sub-

problem suitable for applying the consistency is proposed. To maximize the benefit of 

inferences made by the consistency we proposed to apply it on regions of the input in-

stance with locally difficult constraint setup. It means that we are trying to choose such 

sub-problem for applying the consistency that itself is difficult in certain sense (concen-

trating on difficulty proved to beneficial in [21] but the old technique required the whole 

instance to exhibit a difficult constraint setup). We were primarily inspired by the diffi-

culty of well known problems such as pigeon/hole principle (P/H principle) or FPGA 

routing [1, 2] and we are trying to select regions of the instance which are similar in 

terms of certain properties to these difficult instances. To do this, a characteristic called 

expected number of satisfied tuples of values is used so that regions that have this cha-

racteristic similar to difficult instances are used as sub-problems on which 

B2C-consistency is applied. In this way we are able to discover sub-problems with hid-

den difficulty and simplify them with the proposed consistency reasoning which results 

in faster solving of the output instance. 

As a validation of proposed concepts a prototype SAT pre-processing tool pre-

processSIGMA [25] based on B2C-consistency and the new sub-problem selection 
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technique has been implemented. The performed experimental evaluation showed that 

our prototype pre-processing tool is competitive with respect to existent prominent tools 

such as LiVer [20], NiVer [20], HyPre [5], and Shatter [2]. 

This work has been iteratively developed and preceding works related to the pre-

sented one appeared in [22, 23, 24]. The organization of the manuscript is as follows: 

basic concepts from constraint programming [10] and SAT are introduced in Section 2. 

Then the concept of B2C-consistency is developed (Section 3). The section that follows 

(Section 4) is devoted to a question of how to build a pre-processing tool exploiting 

B2C-consistency. Finally (Section 5), an extensive experimental evaluation focused on 

the competitiveness and the investigation of internal properties of the implemented pre-

processor is presented. 

2   Background from Constraint Programming and Boolean Satisfiability 

Let us start with the basic notation and definitions used in the rest of the paper. This 

section represents the basic background from constraint programming [10] and Boolean 

satisfiability [7] which the new concepts rely on. 

Definition 1 (Constraint Satisfaction Problem) [10]. A constraint satisfaction problem 

(CSP) over a given finite universe   is a triple         where   is a finite set of va-

riables,   is a finite set of constraints, and        is a function assigning each va-

riable a finite domain. A constraint     is a construct of the form     
    

       
       

where      is an arity of constraint  ,    
    

       
   with   

    for            

is called a scope of  , and        
       

          
   is a relation that enume-

rates a set of tuples of values for which constraint   is satisfied. □ 
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For simplicity, it is sometimes assumed that         for every    . We 

will use this assumption as well in certain cases. Furthermore it is assumed that we can 

reorder variables in the scope of a constraint arbitrarily using the above notation. That is 

for example, if there is a constraint              in   we can suppose that there is 

also an equivalent formulation of   as a constraint              in   where relation 

   can be obtained from    by swapping its components. 

Definition 2 (Solution of CSP) [10]. An assignment       such that           

for every     is called a solution of a given CSP         if it is defined for every 

variable in   and all the constraints in   are satisfied by  . That is, it holds that 

     
       

          
       for every constraint       

    
       

        . □ 

Closely related to CSP is Boolean satisfiability problem (SAT) [7, 9]. It is intro-

duced in the following two definitions. Notice, that in CSP we are trying to find a valua-

tion of variables such that all the constraints are satisfied (the conjunction of all the con-

straints is satisfied). In SAT the task is similar, we are trying to find a Boolean valuation 

that satisfies all the clauses of the input formula (the formula has typically the form of 

conjunction of clauses). 

Definition 3 (Boolean Formula) [9, 16]. A Boolean formula in the conjunctive normal 

form (CNF) over a given set of Boolean variables   is a conjunction:    
 
    where 

     and each    with             is a clause that puts into disjunction literals 

over variables from  . That is,       
   

    for           where      is size of 

the clause and either   
    or   

     for some variable     for every   

        . □ 
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Definition 4 (Boolean Satisfiability Problem) [9]. A valuation of Boolean variables is 

an assignment                 . The given valuation of variables   can be 

naturally extended to a valuation of formulae over   denoted as   . A Boolean satisfia-

bility problem (SAT) with a formula   over   is the task of determining whether there 

exists a valuation   of   such that           . □ 

 We are about to work with the concept of consistencies [10] in SAT which is 

however the concept from constraint programming used over CSPs. Hence it is conve-

nient to define translation of SAT to CSP so that we are able to work with consistencies 

in SAT through this translation. For this purpose we chose a so called literal encoding 

[23] which provides such a translation in the natural way. 

Definition 5 (Literal Encoding of SAT) [23]. Let      
 
    with    

   

    for 

          be a Boolean formula in CNF over  . A literal encoding of   is a CSP 

         
    

    
   where   

                 ,   
           

              for 

every          ; and there are constraints between all the pairs of variables as fol-

lows:      
     

 
  where    

    
       and    

 
   

       is forbidden by a relation    de-

fining a constraint               
   with              ,             , and   

           if there is     such that either     
  and      

 
 or      

  and 

    
 
. □ 

The stripe above generic symbols is used to distinguish constant symbols (with 

the stripe) which do not evaluate from variables (without the stripe) which do evaluate 

(to other constants). Notice, that literal encoding is a binary CSP; that is, all the con-

straints have the arity of at most  . 
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For our purposes, literal encoding is further processed to capture constraints im-

posed by the original formula more explicitly (notice that there is an incompatibility 

between complementary literals only at this stage). A new incompatibility is introduced 

as a constraint between every two literals   
  and   

 
 with              , such that 

   ,             , and              if the singleton unit propagation [11, 21, 

22, 23, 24] with setting   
       infers that   

 
       with respect to   (that is, 

it is set   
      ; all the other variables are left unassigned and then unit propagation 

is performed). Let this modification of literal encoding be called an explicit literal en-

coding and it will be denoted as          
    

    
   (the upper index means that the 

first stage of inference has been made). 

We are now ready to define so called      -consistency [10, 24]. It is a genera-

lization of  -consistency [19] which checks whether a value is supported by a  -tuple of 

values from the domains of other variables. Within      -consistency, it is checked 

whether a pair of consistent values has a supporting  -tuple of values. If there is no such 

supporting  -tuple of values the value or the pair of values respectively can be ruled out 

from further consideration by the additional constraint. 

An auxiliary operation of projection denoted as       will be used to transform 

a tuple   into another tuple with respect to patterns   and  . Tuple   and pattern   are 

of the same size and   is subsumed by  . The result of projection is obtained by match-

ing pattern   on   followed by selecting components of   associated with their counter-

parts in   that correspond to    (for instance,                        ). 

Definition 6 (     -Consistency) [10, 24]. Let     be a natural number,         be 

a CSP, and                   be a      -tuple of distinct variables. A pair of 

values          and              with              for every binary con-
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straint               
   in   is called to be      -consistent with respect to  -tuple 

of variables            if there exists a  -tuple of values         ,         , , 

         such that for every constraint       
    

       
       in   with    

    
     

   
                  it holds that                               

    
     

  
    . The 

pair of values          and              is called to be      -consistent if it is 

     -consistent with respect to all the  -tuples of variables          . Finally, the 

CSP         is called to be      -consistent if all the pairs of values from domains of 

every two distinct variables are      -consistent. □ 

 It is not difficult to see that checking whether there exists a supporting  -tuple of 

values with respect to a fixed  -tuple of variables of unbounded size   is an 

  -complete problem [17] in both  -consistency and      -consistency (for example 

the graph coloring problem can be reduced to the task of searching for a supporting 

 -tuple). Hence, unless      the support cannot be found in polynomial time. 

Another simple observation is that the support with respect to a fixed tuple of variables 

can be found in         by traversing all the involved  -tuples of values. This is also 

the currently best known upper bound of the time complexity of the search for a support 

within      -consistency enforcing algorithms [10]. 

Both discussed higher level consistencies represent powerful techniques when   is 

bounded by the number of variables only. After enforcing  -consistency/     -

consistency with   high enough it is possible to obtain a solution of a problem in back-

track-free manner [10]. Without providing more details, the high enough   means that is 

at least the width of the constraint graph of the given CSP which is at most the number 

of variables [13]. 
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3   Bounded      -Consistency with Complete Graphs – B2C Consistency 

Our new concept of a so called bounded      -consistency with complete graphs 

(B2C-consistency) combines the inference strength of      -consistency with partial 

global reasoning. The global oriented reasoning in SAT which is of our interest has 

been first introduced in [21] and newer versions appeared in [22, 23, 24]. Particularly, 

the idea of exploiting global information reflected in complete sub-graphs in a certain 

graph interpretation of the problem was taken from previous works and was further ela-

borated. However, the global reasoning itself turned out to be unilateral and hence not 

ideally suitable for using in SAT preprocessing. Therefore it is suggested in this work to 

enhance global reasoning with      -consistency which is universal enough to cover 

cases where global reasoning is unsuitable. If both approaches – global and 

     -consistency - are applied together a synergic effect arises in certain situations. 

Local consistencies such as  -consistency and related ones in SAT have been 

studied in several works [6, 18, 27]. The common approach in these works is to encode 

a given task so that a local consistency of interest is simulated by unit propagation [11]. 

Our approach takes an instance of SAT problem as a list of clauses (constraints) and 

applies the consistency directly without caring of the way how the original task was 

encoded into the instance. The result is a set of forbidden value assignments in the case 

of B2C-consistency which is subsequently submitted to a SAT solver together with the 

original instance as a list of additional clauses. 

The major obstacle with      -consistency is that it is difficult to be enforced as 

it is necessary to search for a consistent  -tuple of values which means to traverse the 

search space of the size of      in the worst case (supposed that all the variables have 

identical domain of  ). Hence, to preserve low computation costs of the consistency 

enforcing algorithm we suggest to bound the consistency somehow. It has been chosen 
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to bound the number of steps of the search for a consistent  -tuple by a constant  . 

B2C-consistency is again defined with respect to a      -tuple of distinct va-

riables. Again, it checks whether a given pair of values from domains of two distinct 

variables has a supporting  -tuple in domains of remaining   variables. The upcoming 

sections describes how the new consistency is enforced supposed that      -tuple of 

variables has been already determined. The process how a promising      -tuple can 

be selected is discussed later. 

A Graph Derived from SAT – Graph Interpretation 

Let          
    

    
   be an explicit literal encoding of a given Boolean formula 

 . Next, let us have     and an ordered      -tuple of selected variables   
  

        
 
    
 
           

 
        

  with                        where       for 

                with    . 

It is more convenient to define the consistency with respect to an undirected graph 

derived from the constraint network. The target undirected graph will be represented by 

a so called graph interpretation in the given context. It is defined with respect to   
  as 

an undirected graph     
           where a set of vertices    consists of 

     
                  

    and a set of edges    contains an edge     
      

    with 

                such that    ,              , and               if it holds 

that     
      

       for some constraint           
 
  
      in    (edges stand for for-

bidden pairs of values; that is, an edge represents a conflict). 
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Figure 1. Graph interpretation. An original input Boolean formula   with four clauses 

is shown (upper left). Then a corresponding explicit literal encoding (upper right – that 

is, a literal encoding after singleton unit propagation) – the CSP model consisting of 

four variables is shown. The lower part depicts a graph interpretation over three va-

riables selected in the CSP model.  

 

Initial Setup of B2GS-Consistency 

We are about to utilize structural information contained in the graph interpretation. It 

has been shown in previous works [21, 22, 23] that useful structural information is con-

stituted by the knowledge of complete constraint sub-graphs. Regarding the given con-

text, we can observe that at most one literal can be satisfied in a complete sub-graph in 

the graph interpretation of a literal encoding of a SAT instance. If a large enough com-
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plete sub-graph is detected in the graph interpretation its knowledge can be used for an 

efficient search space pruning or a strong global inference. It will be elaborated in the 

following text how this is exactly done. 

A decomposition into complete sub-graphs of a given graph interpretation  

    
           is constructed first. It is a task of finding a number     and sets   

 , 

  
 , ,   

     called decomposition sets that satisfy the following conditions: 

(i)    
  

      ; that is, all the vertices are covered by the decomposition; 

(ii)   
    

 
 for any two               such that    ; that is, the decom-

position is not allowed to contain redundancies; 

(iii)   
  induces a complete sub-graph over edges from    from for every 

           ; 

(iv)         with          there exists             such that       

  
 ; that is, all the edges are covered by complete sub-graphs. 

Observe that if no further objective is imposed on the decomposition into com-

plete sub-graphs it can be easily constructed by setting        and putting each edge 

into its own decomposition vertex set. On the other hand the construction of decomposi-

tion with respect to any reasonable objective (such as maximizing the size of complete 

sub-graphs or minimizing the number  ) is a difficult task [14, 17]. 

In our approach we are trying to obtain large complete sub-graphs. However, 

this requirement is not that strict so we settle for a greedy approach for the construction 

of a decomposition. The greedy algorithm used in our work is shown using pseudo-code 

as Algorithm 1. 

The algorithm always prefers a vertex with the highest degree with respect to the 

remaining set of edges. Such a vertex is included into the constructed complete graph 

and the task is reduced on its neighborhood. This is repeated until the neighborhood of 
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the currently constructed complete sub-graph is non-empty (neighborhood of a complete 

sub-graph is a set of vertices that are connected to all of the vertices of the sub-graph). 

Once the complete sub-graph is finished its edges are removed from the original graph 

and the process continues until there are any edges. 

 

Algorithm 1. Greedy algorithm for decomposing a graph interpretation into complete 

sub-graphs. The output decomposition is returned as a sequence of decomposition sets 

of vertices where each of them induces a complete sub-graph. 

 function Decompose-Graph-Interpretation     
           : sequence 

  /* Parameters:      
    - a graph interpretation for decomposing */ 

 1:     

 2: while      do 

 3:     
    

 4:                  /* an auxiliary graph for gradual dismantling */ 

5:  while      
  do 

  6:   let           
  be a vertex such that                   

  7:                              
   

  8:     
    

         
 9:                          

 10:          
  
 
  

 11:         
  
 

 
  

 12:                               

 12:        

 13: return    
    

      
   

 

 

The construction of decomposition as shown in Algorithm 1 heuristically prefers 

construction of large complete sub-graph at the beginning. This strategy proved to pro-

duce decompositions of acceptable quality for sub-sequent usage within the 

B2C-consistency enforcing algorithm. 

Proposition 1 (Greedy Time/Space Complexity). The greedy algorithm for decomposi-

tion of a graph interpretation     
           into complete sub-graphs can be imple-

mented to have the worst case time complexity of           
   . The corresponding 
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worst case space is of             . ■ 

Commentary: Observe that there may be up to      complete sub-graphs in the decom-

position (each edge constitutes a decomposition set). All the edges of the input graph 

interpretation may be investigated within the construction of an individual complete 

sub-graph which adds      steps (which is       
  ). Adding a vertex with the maxi-

mum degree into a complete sub-graph consumes      steps while it may be repeated up 

to      times. Altogether we have     
  steps for one complete sub-graph. 

Regarding the space complexity it can be argued that several copies of the input 

graph need to be stored which makes              if neighborhood of a vertex is 

represented using linked lists. ■ 

There are some more properties of the decomposition into complete sub-graphs. 

Notice that decomposition sets intersect vertices corresponding to a domain of a single 

variable at most once. This is due to the fact that there are no edges between vertices 

corresponding to the single domain and due to condition (iii). On the other hand a single 

vertex may be included into several decomposition sets. 

B2C-Consistency Enforcing Algorithm 

B2C-consistency will be defined algorithmically as it is the most natural way to do that. 

Suppose that a decomposition into complete sub-graphs of a given graph interpretation 

has been already constructed. The basic idea is to enforce bounded      -consistency 

using only   steps in the search for a supporting  -tuple. This search will be accompa-

nied by a special pruning which will use the decomposition in complete sub-graphs to 

obtain more global reasoning. It is supposed that the search is done in some systematic 

way by extending partial selection of a supporting tuple of values. No matter how exact-
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ly the search for the support proceeds we can assume that some values/vertices are se-

lected into the partial supporting tuple at every time of the process. The selection auto-

matically rules out several other values/vertices – more precisely, the values/vertices 

that are together with selected ones in some complete sub-graph are ruled out (this is 

due to the condition that at most one literal can be selected in a complete sub-graph). 

 

 

Figure 2. Pigeon hole (P/H) principle – graph interpretation with complete sub-graphs. 

The standard Boolean model of the P/H principle   for     and     is shown in 

the left part. A graph interpretation over the explicit literal encoding of   with selected 

variables    ,    , and     is shown in the right part together with its decomposition into 

complete sub-graphs (notice that the decomposition shown here can be found by the 

presented greedy algorithm - Algorithm 1). 

 

Nevertheless, the main innovative reasoning mechanism uses the decomposition 

in a different way. At every time of the process there are still some candidate val-

ues/vertices for selection into the final supporting  -tuple. Each one is included in some 

decomposition sets from which no value/vertex has been selected yet. Let   be a set of 

such not yet used decomposition sets and let   be a set of already selected vertices. As 

only one value/vertex can be selected from each complete sub-graph we can make the 
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following pruning: if it happens that           the search in the current branch of 

the search tree can be terminated as it is not possible to extend the partial selection so 

that it will finally consist of   elements. This kind of reasoning is especially useful for 

problems with non-local properties such as P/H principle or FPGA Switch-Box routing 

[1]. For illustration see Figure 2 (if      and      have been already selected, then 

   ,    , and        ,       and hence we can conclude that      and      inconsis-

tent). 

The process of consistency enforcing with B2C-consistency for a pair of values 

and a fixed tuple of variables   
         

 
    
 
           

 
      is shown as Algorithm 2. 

The algorithm searches for a supporting  -tuple of values for a given pair of values 

    
           and       

               in domains of       
 
         . The search is done by 

systematic extension of the current partial selection of supporting values/vertices. This 

functionality is implemented using recursive calls which simulates chronological back-

tracking search. 

The algorithm for enforcing B2C-consistency for a pair of values should be re-

garded as an incomplete prover of non-existence of a support. That is, if the algorithm 

finds the given pair of values to be inconsistent then there is actually no support for 

them (that is, it managed to prove that there is no support using   search steps and other 

techniques;       is returned by Check-B2C-Consistency in this case). However, if it 

does not find the given pair of values to be inconsistent then one of the following cases 

might happen: a supporting  -tuple of values was found or the algorithm ran out of the 

allowed number of search steps   (     is returned in this case). 

Proposition 2 (B2C Time/Space Complexity). If     then the algorithm for enforc-

ing B2C-consistency with a decomposition into complete sub-graphs   of a graph inter-
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pretation     
           of a      -tuple of variables   

  can be implemented to 

have the worst case time complexity of            ; otherwise the worst case time 

complexity is        . The corresponding worst case space complexity is        

     . ■ 

 

Algorithm 2. Search for a supporting  -tuple of values within B2C-consistency. It is 

supposed that a decomposition into complete sub-graphs   of a given graph interpreta-

tion     
   with respect to a      -tuple of variables   

  has been already calculated. 

 

 function Check-B2C-Consistency     
         

         
               : boolean 

  /* Parameters:     
         

     - a pair of values for consistency checking 

         
   - a graph interpretation for decomposing, 

         - a decomposition of     
   into 

         complete sub-graphs, 

          - the number of allowed search steps. */ 

 1:         Search-B2C-Support     
         

           
                

 2: return   

 

 function Search-B2C-Support     
         

           
               : pair 

  /* Parameters:    - a set of already selected supports. */ 

 1: if       then return (        

 2: let      
       

         
      

 3: for each       
               do 

 4:  if     then return          /* all the steps were consumed */ 

 5:         

 6:  for each      do /* check of constraints */ 

 7:   if            
             

           
          then         

 8:  let                       
          

 9:  if             then         /* global check */ 

 10:  if   then 

 11:   if       then /* some supports still remain to be found */ 

 12:           Search-B2C-Support     
         

              
       

 13:                  
        

 14:    if   then return          
 15:   else /* all the supports have been found */ 

 16:    return (        
 17:        

 18: return           
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Commentary: It is not difficult to observe that the algorithm needs to go through all the 

      -tuples in the worst case if the number of allowed search steps   is unbounded. 

Checking a  -tuple may consume up to      constraint checks (namely checks against 

complete sub-graphs). If   is bounded then obviously at most   steps are done while 

each step consumes up to     constraint checks. 

As all the data elements are accessed sequentially no extra data structures are 

needed. Hence we need to store graph interpretation and its decomposition into com-

plete sub-graphs which we already know to be of             . The space needed to 

store resulting  -tuple is again of             . ■ 

 

Here it depends what is our perception of  . It is natural perceive it as part of the 

input and hence the complexity of search for a support is exponential with unbounded 

 . Therefore the time consumption represents a main bottleneck of the method. Howev-

er, having the global reasoning based on complete sub-graphs still much can be done in 

  steps while   is bounded. 

4   Building a SAT Pre-processing Tool 

We intended to use B2C-consistency as a basis for a SAT pre-processing tool. As we 

have seen it may not be simply used for that task in its raw form due to its time com-

plexity. A good compromise between computational effort and strength of the inference 

has to be found. This section describes how a tuple of variables should be chosen and 

how to set particular parameters of B2C-consistency to be suitable for the intended pre-

processing tool. 

Selection of  -tuples of CSP Variables 

As it is computationally infeasible to achieve B2C-consistency with respect to all the 
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 -tuples of variables and pairs of values in their domains in a non-trivially large SAT 

instance some selection of promising subsets of variables on that the consistency will be 

applied has to be done. The selection is considered to be promising if there is a chance 

that the consistency rules out some pair of values (that is, the ruled out pair of values 

cannot be part of any solution). At the same time, the information captured in the fact 

that a given pair of values is incompatible should be valuable for a SAT solver in a cer-

tain sense. This requirement is imposed by the intention to use B2C-consistency as a 

preprocessing tool. Hence, the information should not be easily derivable by the SAT 

solver itself since informing the SAT solver about inconsistency between a pair of tri-

vially incompatible values is not helpful. 

Our approach is to select  -tuples of variables that induces a region of the in-

stance with difficult constraint setup that however can be tackled by the consistency. 

Such a setup provides a chance to extract valuable information by B2C-consistency. 

The well known SAT model of pigeon hole principle (P/H principle) – more precisely 

the explicit literal encoding of it – is a representative of such a setup which is well 

known for resisting from being handled by SAT solvers [1]. All the instances of P/H 

principle are unsatisfiable. Having a suitable graph interpretation for P/H principle as it 

is shown in Figure 2 (that is, clauses modeling that each pigeon is placed in some hole 

are selected as a      -tuple of CSP variables for the graph interpretation) we are able 

to calculate various useful probabilistic characteristics. 

Let   be the number of pigeons and let   be the number of holes where it holds 

that      . A constraint density   in a binary CSP will be defined as the ratio of the 

number of allowed pairs of values to the number of all the possible pairs of values. Par-

ticularly in the case of P/H principle it holds that   
 
 
   

 
 
   

 
  

 
 in the graph interpreta-

tion as described above. 
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Table 1. Probabilistic characteristics of graph interpretation of pigeon hole principle. 

Configuration:  
pigeons ( ) 

  

holes 

(     ) 

Constraint 

density   
     

     
 
 

 

 
 

Probability of 

satisfiability 
of a random 

 -tuple   

   
 

 
  

   
   

Expected number 
of satisfied 

 -tuples   

       
 

 
  

   
   

 

 

    0.5 0.125 1 

    0.333333 0.087791 7.111111 

    0.25 0.056314 57.66504 

    0.2 0.035184 549.7558 

    0.166667 0.021737 6084.888 

    0.142857 0.01335 76961.62 

 

Another interesting characteristic is the probability of a randomly selected as-

signment of values to   variables   calculated from the constraint density. It is a rea-

sonable assumption that satisfaction of individual pairs of values within the assignment 

is independent on each other. Then it holds for the probability of satisfaction of a ran-

dom  -tuple of values that         
 
   which is     

 
 
      

  in the case of P/H 

principle. Finally, we will investigate the expected number of satisfied  -tuples of val-

ues   which will be defined as the total number of possible  -tuples multiplied by  . It 

holds that               

 
 
      

  in the case of P/H principle. Several examples 

of probabilistic characteristics are shown in Table 1. The limit behavior of above cha-

racteristics with     is summarized in the following easy to prove proposition. 

Proposition 3 (Limit P/H Characteristics). The probability of satisfiability of a random 

 -tuple of values   in graph interpretation of P/H principle converges to   for    ; 

that is,          
 

 
  

   
    . The expected number of satisfied  -tuples of values   

in P/H principle is           
 

 
       which is    

 

  
 
     

  and blows up to    for 

0 

0.2 

0.4 

0.6 

2 10 18 26 34 42 50 58 

0 

0.05 

0.1 

0.15 

2 10 18 26 34 42 50 58 

Constraint density 

p-tuple satisfiability 

Holes (h) 

Holes (h) 
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   ; that is,               

 
  

   
     . ■ 

We will generalize the P/H principle so that there will be strictly less holes than 

pigeons but not necessarily one fewer. Generalized P/H principle is unsatisfiable as 

well. A sample of probabilistic characteristics of the model of generalized P/H principle 

is shown in Table 2.  

Table 2. Expected number of satisfied tuples of values in generalized P/H principle. 

 

Expected number of satisfied 

 -tuples         

 
  

 
   

 

Number of holes   

Number of 

pigeons   
3 4 5 

2 6.0 12.0 20.0 

3 8.0 27.0 64.0 

4 7.111 45.563 163.84 

5 4.213 57.665 335.544 

6 1.664 54.737 549.756 

7 0.438 38.968 720.576 

  

Our aim is to select      -tuples of CSP variables for B2C-consistency in the 

explicit literal encoding          
    

    
   which has similar probabilistic charac-

teristics that are exhibited by the model of (generalized) P/H principle. This selection is 

supposed to ensure required properties – that is, the similar level of difficulty as P/H 

principle and the similar constraint setup. The following incremental mechanism for 

selecting the next variable based on estimating probabilistic characteristics from the 

currently selected variables will be used. 

The requirement which is specified as the part of input together with   is the in-

terval for expected number of satisfied      -tuples of values. Let    and    be the 

lower and upper bound for this interval respectively. The first CSP variable into the 

2 

4 
6 
8 

1.0E-32 
1.0E-22 

1.0E-12 

1.0E-02 

1.0E+08 

2 
5 

8 
11 

14 

Expected SAT p-tuples 

Holes (h) 
Pigeons (p) 

p  <2..16>  

h  <3..7> 

1
st

 quartile = 5.107 
median = 20.806 
3

rd
 quartile = 113.92 
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     -tuple is supposed to be selected by some specific process (randomly or syste-

matically; actually a systematic process is used within the experimental implementa-

tion). Other CSP variables are selected incrementally; suppose that 

  
         

 
    
 
           is a tuple of the already selected CSP variables (if     then 

the process is finished). Let        be a candidate CSP variable. The expected number of 

satisfied      -tuples with        denoted as           is estimated as follows: let 

          be the constraint density among variables from the set    
           (already 

selected variables together with the new candidate) then 

                      
   
   

   
 

   

             
      

. That is, the product of sizes of 

domains of the final      -tuple is estimated as      th power of geometric mean 

of sizes of domain of already selected variables. The constraint density is supposed to 

be preserved for final      -tuple. If                 then        may be used as the 

next CSP variable for the      -tuple. If there are multiple variables satisfying this 

condition any of them may be selected. The whole process of selection CSP variables 

for B2C-consistency is formalized as Algorithm 3. 

Proposition 4 (Selection Time/Space Complexity). The algorithm for selecting CSP 

variables can be implemented to have the worst case time complexity of 

       
       . The space of        

    is needed in addition to the space necessary 

for storing CSP      . ■ 

Commentary: Each new CSP variable is selected for the resulting tuple out of at most 

   
   CSP variables for which estimation of the expected number of satisfied    

  -tuples must be calculated. Calculating this estimation with respect to a single varia-

ble consumes          steps as it is necessary calculate constraint density relatively to 
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all the already selected variables. A new variable is included exactly   times. 

Additional space is needed for storing probabilistic characteristics for CSP va-

riables which consumes the space of      
   . The space of      is needed to store the 

resulting tuple of CSP variables. ■ 

 

Algorithm 3. Process of selection a suitable      -tuple of CSP variables. Variables 

are heuristically selected to prefer resulting expected number of satisfied      -tuples 

of values in the interval of         or near to this interval from below or above. 

 

 function Select-CSP-Variables         
        

    
    

         : tuple 

 /* Parameters:     - size of the tuple of CSP variables, 

          - the first CSP variable, 

           - explicit literal encoding, 

      ,     - lower and upper bounds for expected number of 

         satisfied      -tuples of values. */ 

 1: for           do 

 2:  for each          
  do 

 3:   let           is the constraint density in         
 
    
 
             

 4:                         
   
   

   
 

   

             
      

 

   /* the following let form assigns   if undefined */ 

 5:  let       
  such that                     

                
 6:  let       

  such that                     
                

 7:  let       
  such that              

 8:  if       then 

 9:         

 10:  else 

 11:   if       then 

 12:          

 13:   else 

 14:    if                          then 

 15:           

 16:    else 

 17:           

 18: return        
 
    
 
           

 

It is infeasible in larger SAT instances to compute and to store constraint density 

between all the pairs of variables on the current commodity hardware as there are too 

many such pairs (notice that there may be more than        clauses in large SAT in-
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stances which makes more than        
 

          pairs of variables; that would 

require approximately several terabytes of memory). Hence it is necessary to compute 

constraint density on demand. 

SAT Preprocessing with B2C-Consistency 

An experimental SAT preprocessing tool based on B2C-consistency called prepro-

cessSIGMA [25] was implemented C++ in order to conduct an experimental evalua-

tion and to provide proof of the concept. To achieve the best inference strength of pre-

processing,      -tuples are selected according to the theory in the previous section 

so that the expected number of satisfied tuples of values belongs into the interval typical 

for the model of generalized P/H principle. We select   uniformly from the interval 

        as it experimentally proved to be computationally manageable in reasonable 

time. 

In typical SAT instances arity of clauses ranges from   to    [15] while the most 

common are small clauses with arities  ,  , and   - domain sizes in the corresponding 

literal encodings are exactly the same. The expected number of satisfied tuples of values 

for a setup of P/H principle with corresponding           and          belongs into 

the interval                 while the 1
st
 quartile, median, and 3

rd
 quartile equal to 

     ,       ,        respectively. Taking into account that we are preferring non-

existence of satisfied tuple of values, it is advisable to select the preferred interval for 

expected number of satisfied tuples of values         with    low below the median and 

slightly below the 1
st
 quartile and    slightly above the median. A preliminary experi-

mental evaluation with SAT instances containing mainly small clauses showed that the 

best setting is                    which perfectly correlates with the above probabil-

istic estimations. 
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 As the computation of B2C-consistency is a time consuming operation it is done 

only for certain number of tuples of variables. More precisely small formulae with less 

than or equal to      variables has allowed    times the number variables 

B2C-consistency checks. Large formulae (that is, those with more than      variables) 

are allowed   times square root of the number of variables B2C-consistency checks 

(currently, there is no smooth transition between these two rates as it was not necessary 

to be implemented for experimental evaluation). In both cases the number of steps of 

the search for a consistent  -tuple was bounded by the constant       . This setup 

was manually tailored during the development. 

5   Experimental Evaluation 

The experimental evaluation of our prototype SAT preprocessing preprocessSIGMA 

was concentrated on discovering the benefit of B2C-consistency in the context of other 

existent preprocessing techniques and on evaluation of internal properties of the expe-

rimental implementation. It also should provide a justification for the theory we have 

discussed earlier. 

Basic Competitive Experimental Evaluation 

The experimental implementation of B2C-consistency within our prototype preprocess-

ing tool preprocessSIGMA has been competitively evaluated with respect to the 

most prominent existing tools for SAT preprocessing. Particularly the following prepro-

cessing tools have been chosen: LiVer [20], NiVer [20], HyPre [5], and Shatter 

[2]. As the reference SAT solver MiniSat version 2.2 [12] with build in SatElite 

pre-processing step has been used. 
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LiVer and NiVer use resolution based variable elimination for preprocessing; 

LiVer allows a bounded increase in the total number of literals in the resulting formula 

while NiVer does not allow any increase of this number. The HyPre preprocessing 

tool is based on binary hyper-resolution and equivalence reasoning. Shatter 

represents a tool most akin to our preprocessSIGMA as it exploits certain kind of 

global reasoning as well. Symmetries in the input formula are detected and symmetry 

breaking clauses are added by Shatter into the output formula. To detect symmetries, 

graph isomorphism problem [26] needs to be solved during the preprocessing process. 

The experimental evaluation has been done with a set of 185 relatively difficult 

SAT instances (mixture of satisfiable and unsatisfiable) selected from Satisfiability Li-

brary (SATLib) [15] and from SAT Competition 2002/2003. Relatively difficult means 

here that it takes a SAT solver a considerable effort to solve the instance relatively to its 

size. The complete set of instances selected for tests can be found at the website: 

http://ktiml.mff.cuni.cz/~surynek/research/j-preprocess-2011. This website contains also 

experimental data in the raw form and all the source code necessary to reproduce all the 

presented experiments. 

Several characteristics were measured during the evaluation process. The most 

informative characteristic is the number of conflicts that occurred during the process of 

solving. The conflict can be regarded as a dead-end in the backtracking based search 

process. The number of conflicts has been measured for the original instances and for 

instances processed by individual SAT pre-processors from our test suite. The number 

of conflict corresponds well with the overall runtime. The real runtime
1
 has been meas-

ured as well to obtain the complete picture of performance of all the SAT pre-

processors. 

                                                 
1
 All the test were run on a machine with Intel Xeon 2.0GHz CPU, 12 GiB of RAM, under Ub-

untu Linux version 8.04, Kernel 2.6.24-19 SMP. 

http://ktiml.mff.cuni.cz/~surynek/research/j-preprocess-2011
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Table 3. Results for the fraction of the set of testing instances used in our experimental 

evaluation. The number of conflicts MiniSat 2.2 has encountered on the original 

instances and on those pre-processed with HyPre, LiVer,  Niver, Shatter, and 

our preprocessSIGMA are shown. The best performing pre-processors on each in-

stance are depicted in bold (MiniSat was set to the timeout of 512 seconds). 

Conflicts Variables Clauses C/V Ratio HyPre Original LiVer NiVer Shatter sigma SAT/UNSAT 

bart12.shuffled  180 820 4.555 212 105 118 118 606 105 SAT 

bart14.shuffled  195 905 4.641 402 104 100 100 112 104 SAT 

bart16.shuffled  210 990 4.714 106 103 103 103 105 103 SAT 

bart20.shuffled  270 1476 5.466 127 121 103 103 607 121 SAT 

ca004.shuffled  80 168 2.1 29 43 32 29 42 43 UNSAT 

ca008.shuffled  130 370 2.846 117 145 102 150 151 145 UNSAT 

ca016.shuffled  272 780 2.867 293 449 416 326 357 433 UNSAT 

ca032.shuffled  558 1606 2.878 752 943 739 657 901 790 UNSAT 

difp_19_99_arr_rcr  1201 6563 5.464 141649 209417 58305 304092 209417 92754 SAT 

difp_19_99_wal_rcr  1775 10446 5.885 31031 134284 108681 158235 91397 15245 SAT 

difp_21_1_arr_rcr  1453 7967 5.483 63546 191884 538426 427292 191884 45453 SAT 

difp_21_99_arr_rcr  1453 7967 5.483 97408 190663 249983 350142 190663 35704 SAT 

dp04u03.shuffled  1017 2411 2.370 26 70 72 63 89 61 UNSAT 

dp05s05.shuffled  1885 4818 2.555 138 90 116 100 347 46 SAT 

ezfact32_6.shuffled  769 4777 6.211 33088 422 32957 32957 422 209 SAT 

ezfact32_7.shuffled  769 4777 6.211 29574 5744 46659 46659 5744 836 SAT 

ezfact32_9.shuffled  769 4777 6.211 47191 1181 64056 64056 1181 160 SAT 

ezfact32_10.shuffled  769 4777 6.211 1988 1990 22500 22500 1990 448 SAT 

fpga10_11_uns_rcr  220 1122 5.1 8315862 4935017 4866421 4866421 11509 2 UNSAT 

fpga10_12_uns_rcr  240 1344 5.6 7219129 7209341 7183640 7218248 8889 1 UNSAT 

fpga10_13_uns_rcr  260 1586 6.1 6511919 6466487 6497147 6497268 12521 1 UNSAT 

fpga10_15_uns_rcr  300 2130 7.1 5401469 5390760 5387934 5405715 8517 1 UNSAT 

fpga10_8_sat  120 448 3.733 163 201 201 201 100 201 SAT 

fpga10_9_sat  135 549 4.066 168 202 202 202 61 202 SAT 

fpga12_11_sat  198 968 4.888 405 200 200 200 69 200 SAT 

fpga12_12_sat  216 1128 5.222 102 208 208 208 77 208 SAT 

homer06.shuffled  180 830 4.611 209811 272019 258487 258487 1085 1 UNSAT 

homer10.shuffled  360 3460 9.611 502279 641132 464639 464639 1070 2 UNSAT 

homer16.shuffled  264 1476 5.590 6527180 6525641 6766937 6682636 28720 3 UNSAT 

homer20.shuffled  440 4220 9.590 3249156 3230156 3265756 3207038 12290 2 UNSAT 

lisa19_0_a.shuffled  1201 6563 5.464 117828 235824 381242 108878 235824 15534 SAT 

lisa19_1_a.shuffled  1201 6563 5.464 439709 445563 208567 528589 445563 320076 SAT 

lisa21_1_a.shuffled  1453 7967 5.483 121498 328846 4841 309122 328846 93629 SAT 

med11.shuffled  341 5556 16.293 197 41 101 101 41 41 SAT 

med17.shuffled  782 18616 23.805 151 106 808 808 106 106 SAT 

qg1-7.shuffled  686 6816 9.935 115 49 67 67 242 49 SAT 

term1_gr_2pin_w3.shuffled  746 3517 4.714 69 52 21 124 56 9 UNSAT 

term1_gr_rcs_w3.shuffled  606 2518 4.155 7 7 7 7 10 1 UNSAT 

 

A small fraction of the set of instances (38 out of 185) used for experimental 

evaluation together with their characteristics and results regarding number of conflicts 

after preprocessing is shown in Table 3. In all the tests presented in this manuscript, 

MiniSat was set to the timeout of 512 seconds.  

 The full competitive comparison of the number of conflicts that MiniSAT en-

countered during solving the original instances and pre-processed instances is shown in 

Figure 3. 
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Figure 3. Competitive comparison of preprocessing tools (conflicts). The number of 

conflicts that occurred during solving the original and pre-processed SAT instances with 

MiniSat 2.2 and the improvement ratio are shown (instances are sorted for each pre-

processor to get non-descending sequences in the upper part). Our preprocessSIG-

MA is compared with HyPre, LiVer, NiVer, and Shatter on a set of selected diffi-

cult SAT instances. It can be observed that HyPre, LiVer, and NiVer have almost no 

positive effect contrary to preprocessSIGMA and Shatter which both deliver 

significant improvement. 

 

It can be observed that preprocessors solely relying on simplification through res-

olution and hyper-resolution – that is HyPre, LiVer, and Niver – deliver almost no 

improvement. On instances of medium difficulty even worsening appears. The signifi-

cant benefit of pre-processing is delivered by Shatter as well as by preprocess-

SIGMA that both exploit global reasoning. On instances of easy to medium difficulty 
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preprocessSIGMA delivers better positive effect in pre-processing than Shatter – 

up to 100 times less conflicts are encountered in instances pre-processed with pre-

processSIGMA than in the original ones. The difference between preprocess-

SIGMA and Shatter diminishes on instances of top difficulty (Shatter becomes 

marginally better on several instances). 

The results however should not be interpreted as that pre-processing by resolu-

tion/hyper-resolution is useless. On simpler instances it is typically more beneficial [4] 

if we take into account tradeoff between the benefit and computational costs. Moreover, 

we need to consider that the version of MiniSat we used has its own built-in prepro-

cessor SatElite. The results may hence show that simple resolution-based prepro-

cessing is not enough to outperform the benefit of using SatElite (however this 

claim may require more investigation). 

An experimental evaluation regarding the runtime is shown in Figure 4. It can be 

observed that if solving runtime only is measured, then the picture is almost the same is 

in the case of conflicts – preprocessSIGMA and Shatter clearly outperforms the 

others (HyPre, LiVer, and Niver). The situation changes if the time for pre-

processing is accounted (that is, total runtime = pre-processing runtime + solving run-

time is took into account). Here preprocessSIGMA becomes lagging behind all oth-

ers on easier instances due to its long runtime. 

The similar phenomenon but not that profound can be observed for Shatter 

which loses against HyPre, LiVer, and NiVer on easier instances. The situation 

changes on harder instances where Shatter and preprocessSIGMA perform better 

than the others. Even preprocessSIGMA matches Shatter on yet harder instances. 

If the total runtime for the whole testing suite is considered than we get an inter-

esting comparison: both Shatter and preprocessSIGMA save up to     of the 
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total runtime compared to the situation without pre-processing while the other tools 

(HyPre, LiVer, and Niver) provide no or marginal improvement only. 

 

  

 

Figure 4. Competitive comparison of preprocessing tools (runtime). SAT instances are 

sorted in the same order as in Figure 3. Both preprocessSIGMA and Shatter are 

far ahead the other tools in terms of solving runtime improvement (upper part) while 

preprocessSIGMA tends to provide better outputs for easier instances. If preprocess-

ing time is accounted then preprocessSIGMA loses on easy instances
2
 and matches 

Shatter on harder ones while other tools getting to be outperformed as well. If the 

total runtime for all the tested instances is accounted (pre-processing runtime + solving 

runtime) then both Shatter and preprocessSIGMA save up to     compared to 

the situation without pre-processing while the other tools provide no or marginal im-

provement only. 

 

                                                 
2
 This is mainly due to not well optimized implementation of preprocessSIGMA. 
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Notice, that the match in overall runtime with Shatter on harder instances has 

been achieved despite the not well optimized implementation of preprocessSIG-

MA. Regarding the pre-processing time with preprocessSIGMA there is a great room 

for further improvement. 

B2C-Consistency on Integer Factorization 

Especially good performance was exhibited by our preprocessing tool based on 

B2C-consistency on instances encoding integer factorization problem [3] (satisfiable 

instances). The first observation made on these instances is that B2C-consistency is able 

to make many inferences of inconsistent pairs of values that can be ruled out in the pre-

processed instance afterwards. The additional experimental evaluation showed that the 

more inconsistent pairs of values are inferred the greater the reduction of the number of 

conflicts (as well as runtime) can be achieved on the resulting instance. This property 

however goes against the requirement of bounding the number of B2C-consistency 

checks which is needed to be low to preserve reasonable time consumption (if we want 

to infer as many as possible inconsistent pairs of values we should perform as many as 

possible consistency checks). Hence, there is still room for improvement on integer fac-

torization problems using fine tuning the parameters of B2C-consistency such as the 

allowed number of constraint checks. 

The competitive results regarding integer factorization problem are shown in Fig-

ure 5. Clearly preprocessSIGMA is the best for almost all the instances in terms of 

the number of conflicts that it can save. Regarding the relative improvement it happen 

much less frequently with preprocessSIGMA than with other tools that the pre-

processed instance is worse than the original one. If we look at the total number of con-
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flicts over all the instances in the sub-set, preprocessSIGMA can deliver a saving of  

       which is far the best among all the tested pre-processing tools. 

 

 

 

 

Figure 5. Competitive evaluation on instances encoding integer factorization problem. 

The first part shows absolute number of conflicts (logarithmic scale) MiniSat 2.2 

has encountered on instances encoding integer factorization [3] after pre-processing by 

tested SAT pre-processors. The lower two charts show relative improvement that can be 

achieved by using tested SAT pre-processors in terms of the number of conflicts. Notice 

that our preprocessSIGMA can save up to                     of the overall 

number of conflicts that occur during solving all the original instances which is the best 

of all the tested pre-processing tools. 
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The surprising result was obtained for Shatter which was unexpectedly outper-

formed by both HyPre and Niver. Results regarding the runtime are almost the same 

as for the number of conflicts so they are not presented. 

Experimental Evaluation of the Process of Selection of Variables 

The last part of experiments was devoted to an evaluation of the selection of variables 

for consistency checks. This evaluation is important for verification whether all the in-

ternal processes of B2C-consistency work as it was expected. This aspect concerns 

mainly the selection of a tuple of variables for the consistency check. 

The expected number of satisfied tuples of values over the variables selected by 

Algorithm 3 with the setup of                    over all the consistency checks and 

all the testing instances has the following probabilistic characteristics – minimum, first 

quartile, median, third quartile, maximum equal to      ,       ,       ,        , 

and             respectively. The more detailed insight into the distribution of the 

expected number of satisfied tuples of values over selected variables is provided by a 

partial histogram shown in Figure 6. 

According to these results we can conclude that Algorithm 3 selects variables ac-

cording to the specified bounds    and    sufficiently well. The most of the selections 

of tuples of variables have the expected number of satisfied tuples of values within the 

interval                    as it was originally required. 

As the variable selection algorithm is trying to push the expected number of sa-

tisfied tuples towards lower bound    and the upper bound    from below and from 

above respectively the distribution tends to concentrate around these bounds (the histo-

gram has peaks in the bounds). It may be an interesting research question for future 
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work how the performance of B2C-consistency can be influenced if the distribution has 

a different shape. 

 

 

 

Figure 6. Partial histogram of expected number of satisfied tuples ( ). The histogram 

characterizes the selection of variables made by Algorithm 3 over all the testing SAT 

instances and all the B2C-Consistency checks. Only the part up to the 3
rd

 quartile is 

shown. It can be observed that the most of the selections of tuples of variables have the 

expected number of satisfied tuples of values within the interval                    as 

it was required. 

 

Summary of Experimental Evaluation 

If we summarize results of the experimental evaluation we can state that 

B2C-consistency with the proposed process for selection of variables represent a power-

ful technique that can be used as a basis of a SAT preprocessing tool. Our experimental 

evaluation proved that prototype pre-processing tool preprocessSIGMA based on 

B2C-consistency is fully competitive with respect to the existent prominent SAT pre-

processing tools in terms of the saving of the number of conflicts as well as in terms of 

the overall runtime. The competitiveness in terms of runtime was achieved despite the 

not well optimized implementation of the prototype. 
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Especially good performance was exhibited by preprocessSIGMA on in-

stances encoding integer factorization problems where there is still room for fine tuning 

the parameters of B2C-consistency to achieve yet better performance. 

The evaluation of the internal characteristics of our prototype pre-processing 

tool – namely evaluation of the process of selection of the tuple of variables for consis-

tency check – indicates a good match with theoretical expectations. 

6   Conclusion and Future Work 

We presented in this manuscript a new type of consistency called B2C-consistency 

(bounded      -consistency) for use in Boolean satisfiability (SAT). The new consis-

tency is inspired by both global constraints and local consistency. Basically it is 

     -consistency with the bounded number of search steps for proving inconsistency 

enriched by reasoning over complete sub-graphs of pair-wise conflicting literals. Com-

plete sub-graphs reasoning brings a global aspect into proving inconsistency and can 

improve the consistency enforcing process significantly especially on SAT instances 

encoding well known P/H principle (pigeon/hole principle) and similar which are 

known to be difficult for the standard solving process based on search. 

The whole design of new consistency is explained in the context of modeling SAT 

as a constraint satisfaction problem (CSP) using so called explicit literal encoding (that 

is, literal encoding with explicit clauses obtained by singleton unit propagation). 

Next we investigated probabilistic properties of a so called generalized P/H 

principle – particularly the expected number of satisfied (consistent) tuples of values 

with respect to a tuple of selected variables for consistency check. The investigation 

showed that certain distribution of the expected number of satisfied tuples is characteris-

tic for P/H principle where many inconsistent tuples of values can be found. Therefore 
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we proposed a process for selection of variables which is trying to select variables so 

that the corresponding expected number of satisfied tuples of variables has the similar 

probabilistic distribution as in the case of P/H principle. Using this process we are try-

ing to identify hard sub-problems (such a P/H principle) that can be yet resolved by 

B2C-consistency. 

To evaluate our proposal we implemented B2C-consistency and the process of 

selection of variables within a prototype SAT pre-processing tool preprocessSIG-

MA. The experiments confirmed that B2C-consistency and variable selection process are 

beneficial and that we are able to select variables for consistency checks with similar 

probabilistic characteristics as in the case of generalized P/H principle. The competitive 

evaluation on a set of 185 SAT instances (mixture of satisfiable and unsatisfiable) 

showed that preprocessSIGMA delivers better results than existent pre-processing 

tools HyPre, LiVer, and Niver which are based on local reasoning and comparable 

results to Shatter which is based on symmetry breaking. On instances encoding in-

teger factorization problem preprocessSIGMA performed as far the best of all the 

tested pre-processing tools. Moreover, preprocessSIGMA has some advantages with 

respect to the comparable Shatter. It is easier to implement – in Shatter, graph 

isomorphism which is a difficult problem itself needs to be solved – and it has many 

parameters that can be further fine tuned. Notice, that we achieved competitive perfor-

mance despite the not well optimized implementation of preprocessSIGMA.   

There are several interesting question for future work. At the present time we used 

characterization of the distribution of the expected number of satisfied tuples of values 

with two parameters – the lower and upper bound. It would be interesting to use more 

parameters to control the shape of the resulting distribution over all the consistency 

checks more precisely. 
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Another interesting investigation may be done with repeated used 

B2C-consistency. Consider a pre-processed instance which is pre-process once more. 

This approach is unfortunately impractical at the current state of the implementation as 

the setup of pre-processing is relatively time consuming and to preserve relatively ac-

ceptable competitiveness we cannot afford to run it more than once. However, more 

efficient implementation may change the situation. 
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