
1

Pre-processing in Boolean Satisfiability Using

Bounded -Consistency

on Regions with Locally Difficult Constraint Setup

Pavel Surynek

Department of Theoretical Computer Science and Mathematical Logic,

Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

Malostranské náměstí 25, 118 00 Praha 1, Czech Republic

Graduate School of Maritime Sciences, Division of Maritime Management Sciences,

Kobe University, Japan

5-1-1 Fukae-minamimachi, Higashinada-ku, Kobe 658-0022, Japan

pavel.surynek@mff.cuni.cz, Tel: +420 221 914 139, Fax: +420 221 914 323

mailto:pavel.surynek@mff.cuni.cz

2

Pre-processing in Boolean Satisfiability Using

Bounded -Consistency

on Regions with Locally Difficult Constraint Setup

A new type of partially global consistency derived from -consistency called

bounded -consistency (B2C-consistency) is presented in this manuscript. It

is designed for application in Boolean satisfiability (SAT) as a building block for

a pre-processing tool. Together with the new B2C-consistency a special mechan-

ism for selecting regions of the input SAT instance with difficult constraint setup

was also proposed. This mechanism is used to select suitable difficult sub-

problems of which simplification by the consistency can lead to the significant

reduction of the effort needed to solve the instance. A new prototype pre-

processing tool preprocessSIGMA which is based on proposed techniques

was implemented. As a proof of new concepts a competitive experimental eval-

uation on a set of relatively difficult SAT instances was conducted. It showed that

our prototype pre-processor is competitive with respect to existent pre-processing

tools LiVer, NiVer, HyPre, and Shatter.

Keywords: SAT; CSP; SAT pre-processing; local consistency;

global consistency; -consistency; probability; difficult instances

1 Introduction and Motivation

Recent works dealing with difficult instances of Boolean Satisfiability (SAT) [1, 2, 7, 9,

21] indicate that an intelligent pre-processing focused on the structure of the instance

can dramatically reduce the effort needed to solve it. Technically the pre-processing

task is done by transforming the input instance into another one (hopefully simpler)

which is subsequently submitted to a general purpose SAT solver [7, 12]. It is crucial

that the pre-processing step is fast enough relatively to the runtime of the SAT solver on

the pre-processed instance.

It this work we further develop ideas from [21] where the input Boolean formula

is interpreted as a graph in which graph structures – namely complete sub-graphs – are

3

identified and after some calculation involving the number and the size of complete sub-

graphs, an inference is made. The drawback of the original idea from [21] is that it re-

quires the input instance to be relatively well structured to be able identify an acceptable

complete sub-graph decomposition. In this work we overcome this major drawback by

two new techniques. First, a new type of consistency derived from -consistency

[10, 24] called bounded -consistency with complete graphs (B2C-consistency) is

proposed. It uses graph interpretation of a sub-problem on which reasoning over its de-

composition into complete sub-graphs is made and can be therefore regarded as a par-

tially global reasoning mechanism. Second, a new mechanism for selecting a sub-

problem suitable for applying the consistency is proposed. To maximize the benefit of

inferences made by the consistency we proposed to apply it on regions of the input in-

stance with locally difficult constraint setup. It means that we are trying to choose such

sub-problem for applying the consistency that itself is difficult in certain sense (concen-

trating on difficulty proved to beneficial in [21] but the old technique required the whole

instance to exhibit a difficult constraint setup). We were primarily inspired by the diffi-

culty of well known problems such as pigeon/hole principle (P/H principle) or FPGA

routing [1, 2] and we are trying to select regions of the instance which are similar in

terms of certain properties to these difficult instances. To do this, a characteristic called

expected number of satisfied tuples of values is used so that regions that have this cha-

racteristic similar to difficult instances are used as sub-problems on which

B2C-consistency is applied. In this way we are able to discover sub-problems with hid-

den difficulty and simplify them with the proposed consistency reasoning which results

in faster solving of the output instance.

As a validation of proposed concepts a prototype SAT pre-processing tool pre-

processSIGMA [25] based on B2C-consistency and the new sub-problem selection

4

technique has been implemented. The performed experimental evaluation showed that

our prototype pre-processing tool is competitive with respect to existent prominent tools

such as LiVer [20], NiVer [20], HyPre [5], and Shatter [2].

This work has been iteratively developed and preceding works related to the pre-

sented one appeared in [22, 23, 24]. The organization of the manuscript is as follows:

basic concepts from constraint programming [10] and SAT are introduced in Section 2.

Then the concept of B2C-consistency is developed (Section 3). The section that follows

(Section 4) is devoted to a question of how to build a pre-processing tool exploiting

B2C-consistency. Finally (Section 5), an extensive experimental evaluation focused on

the competitiveness and the investigation of internal properties of the implemented pre-

processor is presented.

2 Background from Constraint Programming and Boolean Satisfiability

Let us start with the basic notation and definitions used in the rest of the paper. This

section represents the basic background from constraint programming [10] and Boolean

satisfiability [7] which the new concepts rely on.

Definition 1 (Constraint Satisfaction Problem) [10]. A constraint satisfaction problem

(CSP) over a given finite universe is a triple where is a finite set of va-

riables, is a finite set of constraints, and is a function assigning each va-

riable a finite domain. A constraint is a construct of the form

where is an arity of constraint ,

 with

 for

is called a scope of , and

 is a relation that enume-

rates a set of tuples of values for which constraint is satisfied. □

5

For simplicity, it is sometimes assumed that for every . We

will use this assumption as well in certain cases. Furthermore it is assumed that we can

reorder variables in the scope of a constraint arbitrarily using the above notation. That is

for example, if there is a constraint in we can suppose that there is

also an equivalent formulation of as a constraint in where relation

 can be obtained from by swapping its components.

Definition 2 (Solution of CSP) [10]. An assignment such that

for every is called a solution of a given CSP if it is defined for every

variable in and all the constraints in are satisfied by . That is, it holds that

 for every constraint

 . □

Closely related to CSP is Boolean satisfiability problem (SAT) [7, 9]. It is intro-

duced in the following two definitions. Notice, that in CSP we are trying to find a valua-

tion of variables such that all the constraints are satisfied (the conjunction of all the con-

straints is satisfied). In SAT the task is similar, we are trying to find a Boolean valuation

that satisfies all the clauses of the input formula (the formula has typically the form of

conjunction of clauses).

Definition 3 (Boolean Formula) [9, 16]. A Boolean formula in the conjunctive normal

form (CNF) over a given set of Boolean variables is a conjunction:

 where

 and each with is a clause that puts into disjunction literals

over variables from . That is,

 for where is size of

the clause and either
 or

 for some variable for every

 . □

6

Definition 4 (Boolean Satisfiability Problem) [9]. A valuation of Boolean variables is

an assignment . The given valuation of variables can be

naturally extended to a valuation of formulae over denoted as . A Boolean satisfia-

bility problem (SAT) with a formula over is the task of determining whether there

exists a valuation of such that . □

 We are about to work with the concept of consistencies [10] in SAT which is

however the concept from constraint programming used over CSPs. Hence it is conve-

nient to define translation of SAT to CSP so that we are able to work with consistencies

in SAT through this translation. For this purpose we chose a so called literal encoding

[23] which provides such a translation in the natural way.

Definition 5 (Literal Encoding of SAT) [23]. Let

 with

 for

 be a Boolean formula in CNF over . A literal encoding of is a CSP

 where

 ,

 for

every ; and there are constraints between all the pairs of variables as fol-

lows:

 where

 and

 is forbidden by a relation de-

fining a constraint
 with , , and

 if there is such that either
 and

 or

 and

. □

The stripe above generic symbols is used to distinguish constant symbols (with

the stripe) which do not evaluate from variables (without the stripe) which do evaluate

(to other constants). Notice, that literal encoding is a binary CSP; that is, all the con-

straints have the arity of at most .

7

For our purposes, literal encoding is further processed to capture constraints im-

posed by the original formula more explicitly (notice that there is an incompatibility

between complementary literals only at this stage). A new incompatibility is introduced

as a constraint between every two literals
 and

 with , such that

 , , and if the singleton unit propagation [11, 21,

22, 23, 24] with setting
 infers that

 with respect to (that is,

it is set
 ; all the other variables are left unassigned and then unit propagation

is performed). Let this modification of literal encoding be called an explicit literal en-

coding and it will be denoted as

 (the upper index means that the

first stage of inference has been made).

We are now ready to define so called -consistency [10, 24]. It is a genera-

lization of -consistency [19] which checks whether a value is supported by a -tuple of

values from the domains of other variables. Within -consistency, it is checked

whether a pair of consistent values has a supporting -tuple of values. If there is no such

supporting -tuple of values the value or the pair of values respectively can be ruled out

from further consideration by the additional constraint.

An auxiliary operation of projection denoted as will be used to transform

a tuple into another tuple with respect to patterns and . Tuple and pattern are

of the same size and is subsumed by . The result of projection is obtained by match-

ing pattern on followed by selecting components of associated with their counter-

parts in that correspond to (for instance,).

Definition 6 (-Consistency) [10, 24]. Let be a natural number, be

a CSP, and be a -tuple of distinct variables. A pair of

values and with for every binary con-

8

straint
 in is called to be -consistent with respect to -tuple

of variables if there exists a -tuple of values , , ,

 such that for every constraint

 in with

 it holds that

 . The

pair of values and is called to be -consistent if it is

 -consistent with respect to all the -tuples of variables . Finally, the

CSP is called to be -consistent if all the pairs of values from domains of

every two distinct variables are -consistent. □

 It is not difficult to see that checking whether there exists a supporting -tuple of

values with respect to a fixed -tuple of variables of unbounded size is an

 -complete problem [17] in both -consistency and -consistency (for example

the graph coloring problem can be reduced to the task of searching for a supporting

 -tuple). Hence, unless the support cannot be found in polynomial time.

Another simple observation is that the support with respect to a fixed tuple of variables

can be found in by traversing all the involved -tuples of values. This is also

the currently best known upper bound of the time complexity of the search for a support

within -consistency enforcing algorithms [10].

Both discussed higher level consistencies represent powerful techniques when is

bounded by the number of variables only. After enforcing -consistency/ -

consistency with high enough it is possible to obtain a solution of a problem in back-

track-free manner [10]. Without providing more details, the high enough means that is

at least the width of the constraint graph of the given CSP which is at most the number

of variables [13].

9

3 Bounded -Consistency with Complete Graphs – B2C Consistency

Our new concept of a so called bounded -consistency with complete graphs

(B2C-consistency) combines the inference strength of -consistency with partial

global reasoning. The global oriented reasoning in SAT which is of our interest has

been first introduced in [21] and newer versions appeared in [22, 23, 24]. Particularly,

the idea of exploiting global information reflected in complete sub-graphs in a certain

graph interpretation of the problem was taken from previous works and was further ela-

borated. However, the global reasoning itself turned out to be unilateral and hence not

ideally suitable for using in SAT preprocessing. Therefore it is suggested in this work to

enhance global reasoning with -consistency which is universal enough to cover

cases where global reasoning is unsuitable. If both approaches – global and

 -consistency - are applied together a synergic effect arises in certain situations.

Local consistencies such as -consistency and related ones in SAT have been

studied in several works [6, 18, 27]. The common approach in these works is to encode

a given task so that a local consistency of interest is simulated by unit propagation [11].

Our approach takes an instance of SAT problem as a list of clauses (constraints) and

applies the consistency directly without caring of the way how the original task was

encoded into the instance. The result is a set of forbidden value assignments in the case

of B2C-consistency which is subsequently submitted to a SAT solver together with the

original instance as a list of additional clauses.

The major obstacle with -consistency is that it is difficult to be enforced as

it is necessary to search for a consistent -tuple of values which means to traverse the

search space of the size of in the worst case (supposed that all the variables have

identical domain of). Hence, to preserve low computation costs of the consistency

enforcing algorithm we suggest to bound the consistency somehow. It has been chosen

10

to bound the number of steps of the search for a consistent -tuple by a constant .

B2C-consistency is again defined with respect to a -tuple of distinct va-

riables. Again, it checks whether a given pair of values from domains of two distinct

variables has a supporting -tuple in domains of remaining variables. The upcoming

sections describes how the new consistency is enforced supposed that -tuple of

variables has been already determined. The process how a promising -tuple can

be selected is discussed later.

A Graph Derived from SAT – Graph Interpretation

Let

 be an explicit literal encoding of a given Boolean formula

 . Next, let us have and an ordered -tuple of selected variables

 with where for

 with .

It is more convenient to define the consistency with respect to an undirected graph

derived from the constraint network. The target undirected graph will be represented by

a so called graph interpretation in the given context. It is defined with respect to
 as

an undirected graph
 where a set of vertices consists of

 and a set of edges contains an edge

 with

 such that , , and if it holds

that

 for some constraint

 in (edges stand for for-

bidden pairs of values; that is, an edge represents a conflict).

11

Figure 1. Graph interpretation. An original input Boolean formula with four clauses

is shown (upper left). Then a corresponding explicit literal encoding (upper right – that

is, a literal encoding after singleton unit propagation) – the CSP model consisting of

four variables is shown. The lower part depicts a graph interpretation over three va-

riables selected in the CSP model.

Initial Setup of B2GS-Consistency

We are about to utilize structural information contained in the graph interpretation. It

has been shown in previous works [21, 22, 23] that useful structural information is con-

stituted by the knowledge of complete constraint sub-graphs. Regarding the given con-

text, we can observe that at most one literal can be satisfied in a complete sub-graph in

the graph interpretation of a literal encoding of a SAT instance. If a large enough com-

Boolean Formula

Explicit Literal Encoding

Graph Interpretation

 ,

 ,

 }

12

plete sub-graph is detected in the graph interpretation its knowledge can be used for an

efficient search space pruning or a strong global inference. It will be elaborated in the

following text how this is exactly done.

A decomposition into complete sub-graphs of a given graph interpretation

 is constructed first. It is a task of finding a number and sets

 ,

 , ,

 called decomposition sets that satisfy the following conditions:

(i)

 ; that is, all the vertices are covered by the decomposition;

(ii)

 for any two such that ; that is, the decom-

position is not allowed to contain redundancies;

(iii)
 induces a complete sub-graph over edges from from for every

 ;

(iv) with there exists such that

 ; that is, all the edges are covered by complete sub-graphs.

Observe that if no further objective is imposed on the decomposition into com-

plete sub-graphs it can be easily constructed by setting and putting each edge

into its own decomposition vertex set. On the other hand the construction of decomposi-

tion with respect to any reasonable objective (such as maximizing the size of complete

sub-graphs or minimizing the number) is a difficult task [14, 17].

In our approach we are trying to obtain large complete sub-graphs. However,

this requirement is not that strict so we settle for a greedy approach for the construction

of a decomposition. The greedy algorithm used in our work is shown using pseudo-code

as Algorithm 1.

The algorithm always prefers a vertex with the highest degree with respect to the

remaining set of edges. Such a vertex is included into the constructed complete graph

and the task is reduced on its neighborhood. This is repeated until the neighborhood of

13

the currently constructed complete sub-graph is non-empty (neighborhood of a complete

sub-graph is a set of vertices that are connected to all of the vertices of the sub-graph).

Once the complete sub-graph is finished its edges are removed from the original graph

and the process continues until there are any edges.

Algorithm 1. Greedy algorithm for decomposing a graph interpretation into complete

sub-graphs. The output decomposition is returned as a sequence of decomposition sets

of vertices where each of them induces a complete sub-graph.

 function Decompose-Graph-Interpretation
 : sequence

 /* Parameters:
 - a graph interpretation for decomposing */

 1:

 2: while do

 3:

 4: /* an auxiliary graph for gradual dismantling */

5: while
 do

 6: let
 be a vertex such that

 7:

 8:

 9:

 10:

 11:

 12:

 12:

 13: return

The construction of decomposition as shown in Algorithm 1 heuristically prefers

construction of large complete sub-graph at the beginning. This strategy proved to pro-

duce decompositions of acceptable quality for sub-sequent usage within the

B2C-consistency enforcing algorithm.

Proposition 1 (Greedy Time/Space Complexity). The greedy algorithm for decomposi-

tion of a graph interpretation
 into complete sub-graphs can be imple-

mented to have the worst case time complexity of
 . The corresponding

14

worst case space is of . ■

Commentary: Observe that there may be up to complete sub-graphs in the decom-

position (each edge constitutes a decomposition set). All the edges of the input graph

interpretation may be investigated within the construction of an individual complete

sub-graph which adds steps (which is
). Adding a vertex with the maxi-

mum degree into a complete sub-graph consumes steps while it may be repeated up

to times. Altogether we have
 steps for one complete sub-graph.

Regarding the space complexity it can be argued that several copies of the input

graph need to be stored which makes if neighborhood of a vertex is

represented using linked lists. ■

There are some more properties of the decomposition into complete sub-graphs.

Notice that decomposition sets intersect vertices corresponding to a domain of a single

variable at most once. This is due to the fact that there are no edges between vertices

corresponding to the single domain and due to condition (iii). On the other hand a single

vertex may be included into several decomposition sets.

B2C-Consistency Enforcing Algorithm

B2C-consistency will be defined algorithmically as it is the most natural way to do that.

Suppose that a decomposition into complete sub-graphs of a given graph interpretation

has been already constructed. The basic idea is to enforce bounded -consistency

using only steps in the search for a supporting -tuple. This search will be accompa-

nied by a special pruning which will use the decomposition in complete sub-graphs to

obtain more global reasoning. It is supposed that the search is done in some systematic

way by extending partial selection of a supporting tuple of values. No matter how exact-

15

ly the search for the support proceeds we can assume that some values/vertices are se-

lected into the partial supporting tuple at every time of the process. The selection auto-

matically rules out several other values/vertices – more precisely, the values/vertices

that are together with selected ones in some complete sub-graph are ruled out (this is

due to the condition that at most one literal can be selected in a complete sub-graph).

Figure 2. Pigeon hole (P/H) principle – graph interpretation with complete sub-graphs.

The standard Boolean model of the P/H principle for and is shown in

the left part. A graph interpretation over the explicit literal encoding of with selected

variables , , and is shown in the right part together with its decomposition into

complete sub-graphs (notice that the decomposition shown here can be found by the

presented greedy algorithm - Algorithm 1).

Nevertheless, the main innovative reasoning mechanism uses the decomposition

in a different way. At every time of the process there are still some candidate val-

ues/vertices for selection into the final supporting -tuple. Each one is included in some

decomposition sets from which no value/vertex has been selected yet. Let be a set of

such not yet used decomposition sets and let be a set of already selected vertices. As

only one value/vertex can be selected from each complete sub-graph we can make the

Boolean Model of P/H = 3/2

P

P

P

H

H

Graph Interpretation

Decomposition into
complete sub-graphs

 and

no two pigeons
in the same hole

every pigeon
in some hole

16

following pruning: if it happens that the search in the current branch of

the search tree can be terminated as it is not possible to extend the partial selection so

that it will finally consist of elements. This kind of reasoning is especially useful for

problems with non-local properties such as P/H principle or FPGA Switch-Box routing

[1]. For illustration see Figure 2 (if and have been already selected, then

 , , and , and hence we can conclude that and inconsis-

tent).

The process of consistency enforcing with B2C-consistency for a pair of values

and a fixed tuple of variables

 is shown as Algorithm 2.

The algorithm searches for a supporting -tuple of values for a given pair of values

 and

 in domains of

 . The search is done by

systematic extension of the current partial selection of supporting values/vertices. This

functionality is implemented using recursive calls which simulates chronological back-

tracking search.

The algorithm for enforcing B2C-consistency for a pair of values should be re-

garded as an incomplete prover of non-existence of a support. That is, if the algorithm

finds the given pair of values to be inconsistent then there is actually no support for

them (that is, it managed to prove that there is no support using search steps and other

techniques; is returned by Check-B2C-Consistency in this case). However, if it

does not find the given pair of values to be inconsistent then one of the following cases

might happen: a supporting -tuple of values was found or the algorithm ran out of the

allowed number of search steps (is returned in this case).

Proposition 2 (B2C Time/Space Complexity). If then the algorithm for enforc-

ing B2C-consistency with a decomposition into complete sub-graphs of a graph inter-

17

pretation
 of a -tuple of variables

 can be implemented to

have the worst case time complexity of ; otherwise the worst case time

complexity is . The corresponding worst case space complexity is

 . ■

Algorithm 2. Search for a supporting -tuple of values within B2C-consistency. It is

supposed that a decomposition into complete sub-graphs of a given graph interpreta-

tion
 with respect to a -tuple of variables

 has been already calculated.

 function Check-B2C-Consistency

 : boolean

 /* Parameters:

 - a pair of values for consistency checking

 - a graph interpretation for decomposing,

 - a decomposition of
 into

 complete sub-graphs,

 - the number of allowed search steps. */

 1: Search-B2C-Support

 2: return

 function Search-B2C-Support

 : pair

 /* Parameters: - a set of already selected supports. */

 1: if then return (

 2: let

 3: for each
 do

 4: if then return /* all the steps were consumed */

 5:

 6: for each do /* check of constraints */

 7: if

 then

 8: let

 9: if then /* global check */

 10: if then

 11: if then /* some supports still remain to be found */

 12: Search-B2C-Support

 13:

 14: if then return
 15: else /* all the supports have been found */

 16: return (
 17:

 18: return

18

Commentary: It is not difficult to observe that the algorithm needs to go through all the

 -tuples in the worst case if the number of allowed search steps is unbounded.

Checking a -tuple may consume up to constraint checks (namely checks against

complete sub-graphs). If is bounded then obviously at most steps are done while

each step consumes up to constraint checks.

As all the data elements are accessed sequentially no extra data structures are

needed. Hence we need to store graph interpretation and its decomposition into com-

plete sub-graphs which we already know to be of . The space needed to

store resulting -tuple is again of . ■

Here it depends what is our perception of . It is natural perceive it as part of the

input and hence the complexity of search for a support is exponential with unbounded

 . Therefore the time consumption represents a main bottleneck of the method. Howev-

er, having the global reasoning based on complete sub-graphs still much can be done in

 steps while is bounded.

4 Building a SAT Pre-processing Tool

We intended to use B2C-consistency as a basis for a SAT pre-processing tool. As we

have seen it may not be simply used for that task in its raw form due to its time com-

plexity. A good compromise between computational effort and strength of the inference

has to be found. This section describes how a tuple of variables should be chosen and

how to set particular parameters of B2C-consistency to be suitable for the intended pre-

processing tool.

Selection of -tuples of CSP Variables

As it is computationally infeasible to achieve B2C-consistency with respect to all the

19

 -tuples of variables and pairs of values in their domains in a non-trivially large SAT

instance some selection of promising subsets of variables on that the consistency will be

applied has to be done. The selection is considered to be promising if there is a chance

that the consistency rules out some pair of values (that is, the ruled out pair of values

cannot be part of any solution). At the same time, the information captured in the fact

that a given pair of values is incompatible should be valuable for a SAT solver in a cer-

tain sense. This requirement is imposed by the intention to use B2C-consistency as a

preprocessing tool. Hence, the information should not be easily derivable by the SAT

solver itself since informing the SAT solver about inconsistency between a pair of tri-

vially incompatible values is not helpful.

Our approach is to select -tuples of variables that induces a region of the in-

stance with difficult constraint setup that however can be tackled by the consistency.

Such a setup provides a chance to extract valuable information by B2C-consistency.

The well known SAT model of pigeon hole principle (P/H principle) – more precisely

the explicit literal encoding of it – is a representative of such a setup which is well

known for resisting from being handled by SAT solvers [1]. All the instances of P/H

principle are unsatisfiable. Having a suitable graph interpretation for P/H principle as it

is shown in Figure 2 (that is, clauses modeling that each pigeon is placed in some hole

are selected as a -tuple of CSP variables for the graph interpretation) we are able

to calculate various useful probabilistic characteristics.

Let be the number of pigeons and let be the number of holes where it holds

that . A constraint density in a binary CSP will be defined as the ratio of the

number of allowed pairs of values to the number of all the possible pairs of values. Par-

ticularly in the case of P/H principle it holds that

 in the graph interpreta-

tion as described above.

20

Table 1. Probabilistic characteristics of graph interpretation of pigeon hole principle.

Configuration:
pigeons ()

holes

()

Constraint

density

Probability of

satisfiability
of a random

 -tuple

Expected number
of satisfied

 -tuples

 0.5 0.125 1

 0.333333 0.087791 7.111111

 0.25 0.056314 57.66504

 0.2 0.035184 549.7558

 0.166667 0.021737 6084.888

 0.142857 0.01335 76961.62

Another interesting characteristic is the probability of a randomly selected as-

signment of values to variables calculated from the constraint density. It is a rea-

sonable assumption that satisfaction of individual pairs of values within the assignment

is independent on each other. Then it holds for the probability of satisfaction of a ran-

dom -tuple of values that

 which is

 in the case of P/H

principle. Finally, we will investigate the expected number of satisfied -tuples of val-

ues which will be defined as the total number of possible -tuples multiplied by . It

holds that

 in the case of P/H principle. Several examples

of probabilistic characteristics are shown in Table 1. The limit behavior of above cha-

racteristics with is summarized in the following easy to prove proposition.

Proposition 3 (Limit P/H Characteristics). The probability of satisfiability of a random

 -tuple of values in graph interpretation of P/H principle converges to for ;

that is,

 . The expected number of satisfied -tuples of values

in P/H principle is

 which is

 and blows up to for

0

0.2

0.4

0.6

2 10 18 26 34 42 50 58

0

0.05

0.1

0.15

2 10 18 26 34 42 50 58

Constraint density

p-tuple satisfiability

Holes (h)

Holes (h)

21

 ; that is,

 . ■

We will generalize the P/H principle so that there will be strictly less holes than

pigeons but not necessarily one fewer. Generalized P/H principle is unsatisfiable as

well. A sample of probabilistic characteristics of the model of generalized P/H principle

is shown in Table 2.

Table 2. Expected number of satisfied tuples of values in generalized P/H principle.

Expected number of satisfied

 -tuples

Number of holes

Number of

pigeons
3 4 5

2 6.0 12.0 20.0

3 8.0 27.0 64.0

4 7.111 45.563 163.84

5 4.213 57.665 335.544

6 1.664 54.737 549.756

7 0.438 38.968 720.576

Our aim is to select -tuples of CSP variables for B2C-consistency in the

explicit literal encoding

 which has similar probabilistic charac-

teristics that are exhibited by the model of (generalized) P/H principle. This selection is

supposed to ensure required properties – that is, the similar level of difficulty as P/H

principle and the similar constraint setup. The following incremental mechanism for

selecting the next variable based on estimating probabilistic characteristics from the

currently selected variables will be used.

The requirement which is specified as the part of input together with is the in-

terval for expected number of satisfied -tuples of values. Let and be the

lower and upper bound for this interval respectively. The first CSP variable into the

2

4
6
8

1.0E-32
1.0E-22

1.0E-12

1.0E-02

1.0E+08

2
5

8
11

14

Expected SAT p-tuples

Holes (h)
Pigeons (p)

p  <2..16>

h  <3..7>

1
st

 quartile = 5.107
median = 20.806
3

rd
 quartile = 113.92

22

 -tuple is supposed to be selected by some specific process (randomly or syste-

matically; actually a systematic process is used within the experimental implementa-

tion). Other CSP variables are selected incrementally; suppose that

 is a tuple of the already selected CSP variables (if then

the process is finished). Let be a candidate CSP variable. The expected number of

satisfied -tuples with denoted as is estimated as follows: let

 be the constraint density among variables from the set
 (already

selected variables together with the new candidate) then

. That is, the product of sizes of

domains of the final -tuple is estimated as th power of geometric mean

of sizes of domain of already selected variables. The constraint density is supposed to

be preserved for final -tuple. If then may be used as the

next CSP variable for the -tuple. If there are multiple variables satisfying this

condition any of them may be selected. The whole process of selection CSP variables

for B2C-consistency is formalized as Algorithm 3.

Proposition 4 (Selection Time/Space Complexity). The algorithm for selecting CSP

variables can be implemented to have the worst case time complexity of

 . The space of

 is needed in addition to the space necessary

for storing CSP . ■

Commentary: Each new CSP variable is selected for the resulting tuple out of at most

 CSP variables for which estimation of the expected number of satisfied

 -tuples must be calculated. Calculating this estimation with respect to a single varia-

ble consumes steps as it is necessary calculate constraint density relatively to

23

all the already selected variables. A new variable is included exactly times.

Additional space is needed for storing probabilistic characteristics for CSP va-

riables which consumes the space of
 . The space of is needed to store the

resulting tuple of CSP variables. ■

Algorithm 3. Process of selection a suitable -tuple of CSP variables. Variables

are heuristically selected to prefer resulting expected number of satisfied -tuples

of values in the interval of or near to this interval from below or above.

 function Select-CSP-Variables

 : tuple

 /* Parameters: - size of the tuple of CSP variables,

 - the first CSP variable,

 - explicit literal encoding,

 , - lower and upper bounds for expected number of

 satisfied -tuples of values. */

 1: for do

 2: for each
 do

 3: let is the constraint density in

 4:

 /* the following let form assigns if undefined */

 5: let
 such that

 6: let

 such that

 7: let
 such that

 8: if then

 9:

 10: else

 11: if then

 12:

 13: else

 14: if then

 15:

 16: else

 17:

 18: return

It is infeasible in larger SAT instances to compute and to store constraint density

between all the pairs of variables on the current commodity hardware as there are too

many such pairs (notice that there may be more than clauses in large SAT in-

24

stances which makes more than

 pairs of variables; that would

require approximately several terabytes of memory). Hence it is necessary to compute

constraint density on demand.

SAT Preprocessing with B2C-Consistency

An experimental SAT preprocessing tool based on B2C-consistency called prepro-

cessSIGMA [25] was implemented C++ in order to conduct an experimental evalua-

tion and to provide proof of the concept. To achieve the best inference strength of pre-

processing, -tuples are selected according to the theory in the previous section

so that the expected number of satisfied tuples of values belongs into the interval typical

for the model of generalized P/H principle. We select uniformly from the interval

 as it experimentally proved to be computationally manageable in reasonable

time.

In typical SAT instances arity of clauses ranges from to [15] while the most

common are small clauses with arities , , and - domain sizes in the corresponding

literal encodings are exactly the same. The expected number of satisfied tuples of values

for a setup of P/H principle with corresponding and belongs into

the interval while the 1
st
 quartile, median, and 3

rd
 quartile equal to

 , , respectively. Taking into account that we are preferring non-

existence of satisfied tuple of values, it is advisable to select the preferred interval for

expected number of satisfied tuples of values with low below the median and

slightly below the 1
st
 quartile and slightly above the median. A preliminary experi-

mental evaluation with SAT instances containing mainly small clauses showed that the

best setting is which perfectly correlates with the above probabil-

istic estimations.

25

 As the computation of B2C-consistency is a time consuming operation it is done

only for certain number of tuples of variables. More precisely small formulae with less

than or equal to variables has allowed times the number variables

B2C-consistency checks. Large formulae (that is, those with more than variables)

are allowed times square root of the number of variables B2C-consistency checks

(currently, there is no smooth transition between these two rates as it was not necessary

to be implemented for experimental evaluation). In both cases the number of steps of

the search for a consistent -tuple was bounded by the constant . This setup

was manually tailored during the development.

5 Experimental Evaluation

The experimental evaluation of our prototype SAT preprocessing preprocessSIGMA

was concentrated on discovering the benefit of B2C-consistency in the context of other

existent preprocessing techniques and on evaluation of internal properties of the expe-

rimental implementation. It also should provide a justification for the theory we have

discussed earlier.

Basic Competitive Experimental Evaluation

The experimental implementation of B2C-consistency within our prototype preprocess-

ing tool preprocessSIGMA has been competitively evaluated with respect to the

most prominent existing tools for SAT preprocessing. Particularly the following prepro-

cessing tools have been chosen: LiVer [20], NiVer [20], HyPre [5], and Shatter

[2]. As the reference SAT solver MiniSat version 2.2 [12] with build in SatElite

pre-processing step has been used.

26

LiVer and NiVer use resolution based variable elimination for preprocessing;

LiVer allows a bounded increase in the total number of literals in the resulting formula

while NiVer does not allow any increase of this number. The HyPre preprocessing

tool is based on binary hyper-resolution and equivalence reasoning. Shatter

represents a tool most akin to our preprocessSIGMA as it exploits certain kind of

global reasoning as well. Symmetries in the input formula are detected and symmetry

breaking clauses are added by Shatter into the output formula. To detect symmetries,

graph isomorphism problem [26] needs to be solved during the preprocessing process.

The experimental evaluation has been done with a set of 185 relatively difficult

SAT instances (mixture of satisfiable and unsatisfiable) selected from Satisfiability Li-

brary (SATLib) [15] and from SAT Competition 2002/2003. Relatively difficult means

here that it takes a SAT solver a considerable effort to solve the instance relatively to its

size. The complete set of instances selected for tests can be found at the website:

http://ktiml.mff.cuni.cz/~surynek/research/j-preprocess-2011. This website contains also

experimental data in the raw form and all the source code necessary to reproduce all the

presented experiments.

Several characteristics were measured during the evaluation process. The most

informative characteristic is the number of conflicts that occurred during the process of

solving. The conflict can be regarded as a dead-end in the backtracking based search

process. The number of conflicts has been measured for the original instances and for

instances processed by individual SAT pre-processors from our test suite. The number

of conflict corresponds well with the overall runtime. The real runtime
1
 has been meas-

ured as well to obtain the complete picture of performance of all the SAT pre-

processors.

1
 All the test were run on a machine with Intel Xeon 2.0GHz CPU, 12 GiB of RAM, under Ub-

untu Linux version 8.04, Kernel 2.6.24-19 SMP.

http://ktiml.mff.cuni.cz/~surynek/research/j-preprocess-2011

27

Table 3. Results for the fraction of the set of testing instances used in our experimental

evaluation. The number of conflicts MiniSat 2.2 has encountered on the original

instances and on those pre-processed with HyPre, LiVer, Niver, Shatter, and

our preprocessSIGMA are shown. The best performing pre-processors on each in-

stance are depicted in bold (MiniSat was set to the timeout of 512 seconds).

Conflicts Variables Clauses C/V Ratio HyPre Original LiVer NiVer Shatter sigma SAT/UNSAT

bart12.shuffled 180 820 4.555 212 105 118 118 606 105 SAT

bart14.shuffled 195 905 4.641 402 104 100 100 112 104 SAT

bart16.shuffled 210 990 4.714 106 103 103 103 105 103 SAT

bart20.shuffled 270 1476 5.466 127 121 103 103 607 121 SAT

ca004.shuffled 80 168 2.1 29 43 32 29 42 43 UNSAT

ca008.shuffled 130 370 2.846 117 145 102 150 151 145 UNSAT

ca016.shuffled 272 780 2.867 293 449 416 326 357 433 UNSAT

ca032.shuffled 558 1606 2.878 752 943 739 657 901 790 UNSAT

difp_19_99_arr_rcr 1201 6563 5.464 141649 209417 58305 304092 209417 92754 SAT

difp_19_99_wal_rcr 1775 10446 5.885 31031 134284 108681 158235 91397 15245 SAT

difp_21_1_arr_rcr 1453 7967 5.483 63546 191884 538426 427292 191884 45453 SAT

difp_21_99_arr_rcr 1453 7967 5.483 97408 190663 249983 350142 190663 35704 SAT

dp04u03.shuffled 1017 2411 2.370 26 70 72 63 89 61 UNSAT

dp05s05.shuffled 1885 4818 2.555 138 90 116 100 347 46 SAT

ezfact32_6.shuffled 769 4777 6.211 33088 422 32957 32957 422 209 SAT

ezfact32_7.shuffled 769 4777 6.211 29574 5744 46659 46659 5744 836 SAT

ezfact32_9.shuffled 769 4777 6.211 47191 1181 64056 64056 1181 160 SAT

ezfact32_10.shuffled 769 4777 6.211 1988 1990 22500 22500 1990 448 SAT

fpga10_11_uns_rcr 220 1122 5.1 8315862 4935017 4866421 4866421 11509 2 UNSAT

fpga10_12_uns_rcr 240 1344 5.6 7219129 7209341 7183640 7218248 8889 1 UNSAT

fpga10_13_uns_rcr 260 1586 6.1 6511919 6466487 6497147 6497268 12521 1 UNSAT

fpga10_15_uns_rcr 300 2130 7.1 5401469 5390760 5387934 5405715 8517 1 UNSAT

fpga10_8_sat 120 448 3.733 163 201 201 201 100 201 SAT

fpga10_9_sat 135 549 4.066 168 202 202 202 61 202 SAT

fpga12_11_sat 198 968 4.888 405 200 200 200 69 200 SAT

fpga12_12_sat 216 1128 5.222 102 208 208 208 77 208 SAT

homer06.shuffled 180 830 4.611 209811 272019 258487 258487 1085 1 UNSAT

homer10.shuffled 360 3460 9.611 502279 641132 464639 464639 1070 2 UNSAT

homer16.shuffled 264 1476 5.590 6527180 6525641 6766937 6682636 28720 3 UNSAT

homer20.shuffled 440 4220 9.590 3249156 3230156 3265756 3207038 12290 2 UNSAT

lisa19_0_a.shuffled 1201 6563 5.464 117828 235824 381242 108878 235824 15534 SAT

lisa19_1_a.shuffled 1201 6563 5.464 439709 445563 208567 528589 445563 320076 SAT

lisa21_1_a.shuffled 1453 7967 5.483 121498 328846 4841 309122 328846 93629 SAT

med11.shuffled 341 5556 16.293 197 41 101 101 41 41 SAT

med17.shuffled 782 18616 23.805 151 106 808 808 106 106 SAT

qg1-7.shuffled 686 6816 9.935 115 49 67 67 242 49 SAT

term1_gr_2pin_w3.shuffled 746 3517 4.714 69 52 21 124 56 9 UNSAT

term1_gr_rcs_w3.shuffled 606 2518 4.155 7 7 7 7 10 1 UNSAT

A small fraction of the set of instances (38 out of 185) used for experimental

evaluation together with their characteristics and results regarding number of conflicts

after preprocessing is shown in Table 3. In all the tests presented in this manuscript,

MiniSat was set to the timeout of 512 seconds.

 The full competitive comparison of the number of conflicts that MiniSAT en-

countered during solving the original instances and pre-processed instances is shown in

Figure 3.

28

Figure 3. Competitive comparison of preprocessing tools (conflicts). The number of

conflicts that occurred during solving the original and pre-processed SAT instances with

MiniSat 2.2 and the improvement ratio are shown (instances are sorted for each pre-

processor to get non-descending sequences in the upper part). Our preprocessSIG-

MA is compared with HyPre, LiVer, NiVer, and Shatter on a set of selected diffi-

cult SAT instances. It can be observed that HyPre, LiVer, and NiVer have almost no

positive effect contrary to preprocessSIGMA and Shatter which both deliver

significant improvement.

It can be observed that preprocessors solely relying on simplification through res-

olution and hyper-resolution – that is HyPre, LiVer, and Niver – deliver almost no

improvement. On instances of medium difficulty even worsening appears. The signifi-

cant benefit of pre-processing is delivered by Shatter as well as by preprocess-

SIGMA that both exploit global reasoning. On instances of easy to medium difficulty

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 17 33 49 65 81 97 113 129 145 161 177

N
u

m
b

e
r

o
f

co
n

fl
ic

ts

Comparison of Preprocessing Tools | Conflicts

Original
HyPre
LiVer
NiVer
Shatter
sigma

0.1

1

10

100

1000

1 17 33 49 65 81 97 113 129 145 161 177

Im
p

ro
ve

m
e

n
t

ra
ti

o

Improvement Ratio | Conflicts

Original HyPre LiVer
NiVer Shatter sigma

SAT Instance

SAT Instance

29

preprocessSIGMA delivers better positive effect in pre-processing than Shatter –

up to 100 times less conflicts are encountered in instances pre-processed with pre-

processSIGMA than in the original ones. The difference between preprocess-

SIGMA and Shatter diminishes on instances of top difficulty (Shatter becomes

marginally better on several instances).

The results however should not be interpreted as that pre-processing by resolu-

tion/hyper-resolution is useless. On simpler instances it is typically more beneficial [4]

if we take into account tradeoff between the benefit and computational costs. Moreover,

we need to consider that the version of MiniSat we used has its own built-in prepro-

cessor SatElite. The results may hence show that simple resolution-based prepro-

cessing is not enough to outperform the benefit of using SatElite (however this

claim may require more investigation).

An experimental evaluation regarding the runtime is shown in Figure 4. It can be

observed that if solving runtime only is measured, then the picture is almost the same is

in the case of conflicts – preprocessSIGMA and Shatter clearly outperforms the

others (HyPre, LiVer, and Niver). The situation changes if the time for pre-

processing is accounted (that is, total runtime = pre-processing runtime + solving run-

time is took into account). Here preprocessSIGMA becomes lagging behind all oth-

ers on easier instances due to its long runtime.

The similar phenomenon but not that profound can be observed for Shatter

which loses against HyPre, LiVer, and NiVer on easier instances. The situation

changes on harder instances where Shatter and preprocessSIGMA perform better

than the others. Even preprocessSIGMA matches Shatter on yet harder instances.

If the total runtime for the whole testing suite is considered than we get an inter-

esting comparison: both Shatter and preprocessSIGMA save up to of the

30

total runtime compared to the situation without pre-processing while the other tools

(HyPre, LiVer, and Niver) provide no or marginal improvement only.

Figure 4. Competitive comparison of preprocessing tools (runtime). SAT instances are

sorted in the same order as in Figure 3. Both preprocessSIGMA and Shatter are

far ahead the other tools in terms of solving runtime improvement (upper part) while

preprocessSIGMA tends to provide better outputs for easier instances. If preprocess-

ing time is accounted then preprocessSIGMA loses on easy instances
2
 and matches

Shatter on harder ones while other tools getting to be outperformed as well. If the

total runtime for all the tested instances is accounted (pre-processing runtime + solving

runtime) then both Shatter and preprocessSIGMA save up to compared to

the situation without pre-processing while the other tools provide no or marginal im-

provement only.

2
 This is mainly due to not well optimized implementation of preprocessSIGMA.

0.01

0.1

1

10

100

1000

1 17 33 49 65 81 97 113 129 145 161 177 193

R
u

n
ti

m
e

 (
se

co
n

d
s)

Solving Runtime (without Pre-processing) Original

HyPre

LiVer

NiVer

Shatter

sigma

0.01

0.1

1

10

100

1000

1 25 49 73 97 121 145 169 193

R
u

n
ti

m
e

 (
se

co
n

d
s)

Overall Runtime =
Pre-processing + Solving

Original HyPre

LiVer NiVer

Shatter sigma

64.48%

64.02%

99.75%

100.39%

97.53%

100.00%

0.00% 40.00% 80.00% 120.00%

sigma

Shatter

NiVer

LiVer

HyPre

Original

Overall Improvement | Runtime

% of runtime w.r.t. original

SAT Instance

SAT Instance

31

Notice, that the match in overall runtime with Shatter on harder instances has

been achieved despite the not well optimized implementation of preprocessSIG-

MA. Regarding the pre-processing time with preprocessSIGMA there is a great room

for further improvement.

B2C-Consistency on Integer Factorization

Especially good performance was exhibited by our preprocessing tool based on

B2C-consistency on instances encoding integer factorization problem [3] (satisfiable

instances). The first observation made on these instances is that B2C-consistency is able

to make many inferences of inconsistent pairs of values that can be ruled out in the pre-

processed instance afterwards. The additional experimental evaluation showed that the

more inconsistent pairs of values are inferred the greater the reduction of the number of

conflicts (as well as runtime) can be achieved on the resulting instance. This property

however goes against the requirement of bounding the number of B2C-consistency

checks which is needed to be low to preserve reasonable time consumption (if we want

to infer as many as possible inconsistent pairs of values we should perform as many as

possible consistency checks). Hence, there is still room for improvement on integer fac-

torization problems using fine tuning the parameters of B2C-consistency such as the

allowed number of constraint checks.

The competitive results regarding integer factorization problem are shown in Fig-

ure 5. Clearly preprocessSIGMA is the best for almost all the instances in terms of

the number of conflicts that it can save. Regarding the relative improvement it happen

much less frequently with preprocessSIGMA than with other tools that the pre-

processed instance is worse than the original one. If we look at the total number of con-

32

flicts over all the instances in the sub-set, preprocessSIGMA can deliver a saving of

 which is far the best among all the tested pre-processing tools.

Figure 5. Competitive evaluation on instances encoding integer factorization problem.

The first part shows absolute number of conflicts (logarithmic scale) MiniSat 2.2

has encountered on instances encoding integer factorization [3] after pre-processing by

tested SAT pre-processors. The lower two charts show relative improvement that can be

achieved by using tested SAT pre-processors in terms of the number of conflicts. Notice

that our preprocessSIGMA can save up to of the overall

number of conflicts that occur during solving all the original instances which is the best

of all the tested pre-processing tools.

1000

10000

100000

1000000

10000000

d
if

p
_2

0_
2

_w
al

_r
cr

d
if

p
_1

9_
2

_w
al

_r
cr

d
if

p
_1

9_
9

9_
w

al
_r

cr

d
if

p
_2

0_
2

_a
rr

_r
cr

d
if

p
_2

1_
1

_a
rr

_r
cr

d
if

p
_1

9_
0

_a
rr

_r
cr

d
if

p
_2

0_
9

9_
ar

r_
rc

r

d
if

p
_2

0_
3

_a
rr

_r
cr

d
if

p
_2

1_
9

9_
ar

r_
rc

r

d
if

p
_2

1_
1

_w
al

_r
cr

d
if

p
_1

9_
9

9_
ar

r_
rc

r

d
if

p
_2

1_
9

9_
w

al
_r

cr

d
if

p
_2

0_
3

_w
al

_r
cr

d
if

p
_2

0_
9

9_
w

al
_r

cr

d
if

p
_2

0_
1

_a
rr

_r
cr

d
if

p
_1

9_
3

_a
rr

_r
cr

d
if

p
_2

0_
0

_a
rr

_r
cr

d
if

p
_1

9_
0

_w
al

_r
cr

d
if

p
_2

0_
1

_w
al

_r
cr

d
if

p
_1

9_
3

_w
al

_r
cr

d
if

p
_1

9_
1

_a
rr

_r
cr

d
if

p
_2

0_
0

_w
al

_r
cr

d
if

p
_2

1_
2

_w
al

_r
cr

d
if

p
_2

1_
3

_a
rr

_r
cr

d
if

p
_1

9_
1

_w
al

_r
cr

d
if

p
_2

1_
2

_a
rr

_r
cr

d
if

p
_2

1_
3

_w
al

_r
cr

d
if

p
_2

1_
0

_a
rr

_r
cr

d
if

p
_2

1_
0

_w
al

_r
cr

N
u

m
b

e
r

o
f

C
o

n
fl

ic
ts

Preprocessing on Integer Factorization | Conflicts

Original HyPre LiVer

NiVer Shatter sigma

0.001

0.01

0.1

1

10

100

1000

d
if

p
_2

1
_3

_w
al

_r
cr

d
if

p
_2

0
_2

_a
rr

_r
cr

d
if

p
_2

0
_1

_w
al

_r
cr

d
if

p
_2

1
_2

_w
al

_r
cr

d
if

p
_1

9
_1

_w
al

_r
cr

d
if

p
_2

1
_9

9
_w

al
_r

cr

d
if

p
_2

0
_3

_w
al

_r
cr

d
if

p
_2

0
_1

_a
rr

_r
cr

d
if

p
_1

9
_0

_w
al

_r
cr

d
if

p
_2

1
_0

_w
al

_r
cr

d
if

p
_1

9
_1

_a
rr

_r
cr

d
if

p
_2

0
_0

_w
al

_r
cr

d
if

p
_2

1
_0

_a
rr

_r
cr

d
if

p
_2

0
_9

9
_w

al
_r

cr

d
if

p
_2

0
_0

_a
rr

_r
cr

d
if

p
_2

1
_2

_a
rr

_r
cr

d
if

p
_1

9
_9

9
_a

rr
_r

cr

d
if

p
_1

9
_3

_w
al

_r
cr

d
if

p
_2

0
_3

_a
rr

_r
cr

d
if

p
_2

1
_9

9
_a

rr
_r

cr

d
if

p
_1

9
_0

_a
rr

_r
cr

d
if

p
_2

1
_3

_a
rr

_r
cr

d
if

p
_1

9
_3

_a
rr

_r
cr

d
if

p
_2

0
_9

9
_a

rr
_r

cr

d
if

p
_2

1
_1

_a
rr

_r
cr

d
if

p
_1

9
_2

_w
al

_r
cr

d
if

p
_1

9
_9

9
_w

al
_r

cr

d
if

p
_2

1
_1

_w
al

_r
cr

d
if

p
_2

0
_2

_w
al

_r
cr

Im
p

ro
ve

m
en

t
ra

ti
o

Improvement Ratio on IF | Conflicts

Original HyPre

LiVer NiVer

Shatter sigma

63.91%

98.04%

90.96%

102.75%

96.28%

100.00%

0.00% 40.00% 80.00% 120.00%

sigma

Shatter

NiVer

LiVer

HyPre

Original

Overall Improvement on IF | Conflicts

SAT Instance

SAT Instance % of conflicts w.r.t. original

33

The surprising result was obtained for Shatter which was unexpectedly outper-

formed by both HyPre and Niver. Results regarding the runtime are almost the same

as for the number of conflicts so they are not presented.

Experimental Evaluation of the Process of Selection of Variables

The last part of experiments was devoted to an evaluation of the selection of variables

for consistency checks. This evaluation is important for verification whether all the in-

ternal processes of B2C-consistency work as it was expected. This aspect concerns

mainly the selection of a tuple of variables for the consistency check.

The expected number of satisfied tuples of values over the variables selected by

Algorithm 3 with the setup of over all the consistency checks and

all the testing instances has the following probabilistic characteristics – minimum, first

quartile, median, third quartile, maximum equal to , , , ,

and respectively. The more detailed insight into the distribution of the

expected number of satisfied tuples of values over selected variables is provided by a

partial histogram shown in Figure 6.

According to these results we can conclude that Algorithm 3 selects variables ac-

cording to the specified bounds and sufficiently well. The most of the selections

of tuples of variables have the expected number of satisfied tuples of values within the

interval as it was originally required.

As the variable selection algorithm is trying to push the expected number of sa-

tisfied tuples towards lower bound and the upper bound from below and from

above respectively the distribution tends to concentrate around these bounds (the histo-

gram has peaks in the bounds). It may be an interesting research question for future

34

work how the performance of B2C-consistency can be influenced if the distribution has

a different shape.

Figure 6. Partial histogram of expected number of satisfied tuples (). The histogram

characterizes the selection of variables made by Algorithm 3 over all the testing SAT

instances and all the B2C-Consistency checks. Only the part up to the 3
rd

 quartile is

shown. It can be observed that the most of the selections of tuples of variables have the

expected number of satisfied tuples of values within the interval as

it was required.

Summary of Experimental Evaluation

If we summarize results of the experimental evaluation we can state that

B2C-consistency with the proposed process for selection of variables represent a power-

ful technique that can be used as a basis of a SAT preprocessing tool. Our experimental

evaluation proved that prototype pre-processing tool preprocessSIGMA based on

B2C-consistency is fully competitive with respect to the existent prominent SAT pre-

processing tools in terms of the saving of the number of conflicts as well as in terms of

the overall runtime. The competitiveness in terms of runtime was achieved despite the

not well optimized implementation of the prototype.

0

500

1000

1500

2000

2500

3000

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

N
u

m
b

e
r

o
f

Sa
m

p
le

s

Expected Number of Satisfied Tuples () | Partial Histogram

 Exp. number of SAT tuples

35

Especially good performance was exhibited by preprocessSIGMA on in-

stances encoding integer factorization problems where there is still room for fine tuning

the parameters of B2C-consistency to achieve yet better performance.

The evaluation of the internal characteristics of our prototype pre-processing

tool – namely evaluation of the process of selection of the tuple of variables for consis-

tency check – indicates a good match with theoretical expectations.

6 Conclusion and Future Work

We presented in this manuscript a new type of consistency called B2C-consistency

(bounded -consistency) for use in Boolean satisfiability (SAT). The new consis-

tency is inspired by both global constraints and local consistency. Basically it is

 -consistency with the bounded number of search steps for proving inconsistency

enriched by reasoning over complete sub-graphs of pair-wise conflicting literals. Com-

plete sub-graphs reasoning brings a global aspect into proving inconsistency and can

improve the consistency enforcing process significantly especially on SAT instances

encoding well known P/H principle (pigeon/hole principle) and similar which are

known to be difficult for the standard solving process based on search.

The whole design of new consistency is explained in the context of modeling SAT

as a constraint satisfaction problem (CSP) using so called explicit literal encoding (that

is, literal encoding with explicit clauses obtained by singleton unit propagation).

Next we investigated probabilistic properties of a so called generalized P/H

principle – particularly the expected number of satisfied (consistent) tuples of values

with respect to a tuple of selected variables for consistency check. The investigation

showed that certain distribution of the expected number of satisfied tuples is characteris-

tic for P/H principle where many inconsistent tuples of values can be found. Therefore

36

we proposed a process for selection of variables which is trying to select variables so

that the corresponding expected number of satisfied tuples of variables has the similar

probabilistic distribution as in the case of P/H principle. Using this process we are try-

ing to identify hard sub-problems (such a P/H principle) that can be yet resolved by

B2C-consistency.

To evaluate our proposal we implemented B2C-consistency and the process of

selection of variables within a prototype SAT pre-processing tool preprocessSIG-

MA. The experiments confirmed that B2C-consistency and variable selection process are

beneficial and that we are able to select variables for consistency checks with similar

probabilistic characteristics as in the case of generalized P/H principle. The competitive

evaluation on a set of 185 SAT instances (mixture of satisfiable and unsatisfiable)

showed that preprocessSIGMA delivers better results than existent pre-processing

tools HyPre, LiVer, and Niver which are based on local reasoning and comparable

results to Shatter which is based on symmetry breaking. On instances encoding in-

teger factorization problem preprocessSIGMA performed as far the best of all the

tested pre-processing tools. Moreover, preprocessSIGMA has some advantages with

respect to the comparable Shatter. It is easier to implement – in Shatter, graph

isomorphism which is a difficult problem itself needs to be solved – and it has many

parameters that can be further fine tuned. Notice, that we achieved competitive perfor-

mance despite the not well optimized implementation of preprocessSIGMA.

There are several interesting question for future work. At the present time we used

characterization of the distribution of the expected number of satisfied tuples of values

with two parameters – the lower and upper bound. It would be interesting to use more

parameters to control the shape of the resulting distribution over all the consistency

checks more precisely.

37

Another interesting investigation may be done with repeated used

B2C-consistency. Consider a pre-processed instance which is pre-process once more.

This approach is unfortunately impractical at the current state of the implementation as

the setup of pre-processing is relatively time consuming and to preserve relatively ac-

ceptable competitiveness we cannot afford to run it more than once. However, more

efficient implementation may change the situation.

Acknowledgement

This work is partially supported by The Czech Science Foundation (Grantová agentura

České republiky - GAČR) under the contract number 201/09/P318 and by The Ministry

of Education, Youth and Sports, Czech Republic (Ministerstvo školství, mládeže a

tělovýchovy ČR – MŠMT ČR) under the contract number MSM 0021620838 and par-

tially also by Japan Society for the Promotion of Science (JSPS) within the post-

doctoral fellowship of the author (reference number P11743).

References

1. Aloul, F. A., Ramani, A., Markov, I. L., Sakallah, K. A.: Solving Difficult SAT

Instances in the Presence of Symmetry. Proceedings of the 39th Design Automa-

tion Conference (DAC 2002), pp. 731-736, USA, ACM Press, 2002,

http://www.aloul.net/benchmarks.html, [March 2011].

2. Aloul, F. Markov, I. L., Sakallah, K.: Shatter: Efficient Symmetry-Breaking for

Boolean Satisfiability. Proceedings of the Design Automation Conference (DAC

2003), pp. 836-839, ACM Press, 2003, http://www.aloul.net/Tools/shatter/, [July

2011].

3. Aloul, F. A.: SAT Benchmarks, Difficult Integer Factorization Problems. Re-

search web page, http://www.aloul.net/benchmarks.html, [March 2011].

http://www.aloul.net/benchmarks.html
http://www.aloul.net/Tools/shatter/
http://www.aloul.net/benchmarks.html

38

4. Anbulagan, Slaney, J.: Multiple Preprocessing for Systematic SAT Solvers. Pro-

ceedings of The 6th International Workshop on the Implementation of Logics,

CEUR-WS.org, 2006.

5. Bacchus, F., Winter, J.: Effective Preprocessing with Hyper-Resolution and

Equality Reduction. Proceedings of the Theory and Applications of Satisfiability

Testing, 6th International Conference, (SAT 2003), pp. 341-355, LNCS 2919,

Springer 2004, http://www.cs.toronto.edu/~fbacchus/sat.html, [July 2011].

6. Bessière, C., Hebrard, E., Walsh, T: Local Consistencies in SAT. Proceedings of

the Theory and Applications of Satisfiability Testing, 6th International Confe-

rence (SAT 2003), pp. 299-314, LNCS 2919, Springer, 2004.

7. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability.

IOS Press, 2009.

8. Bomze, I. M., Budinich, M., Pardalos, P. M., Pelillo, M.: The maximum clique

problem, Handbook of Combinatorial Optimization. Kluwer Academic Publish-

ers, 1999.

9. Cook, S. A.: The Complexity of Theorem Proving Procedures. Proceedings of

the 3rd Annual ACM Symposium on Theory of Computing (STOC 1971), pp.

151-158, ACM Press, 1971.

10. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers, 2003.

11. Dowling, W., Gallier, J.: Linear-time algorithms for testing the satisfiability of

propositional Horn formulae. Journal of Logic Programming, Volume 1 (3),

267-284, Elsevier Science Publishers, 1984.

12. Eén, N., Sörensson, N.: An Extensible SAT-solver. Proceedings of Theory and

Applications of Satisfiability Testing, 6th International Conference (SAT 2003),

pp. 502-518, LNCS 2919, Springer 2004, http://minisat.se/MiniSat.html, [July

2011].

13. Freuder, E. C.: A Sufficient Condition for Backtrack-Free Search. Journal of the

ACM, Volume 29, pp. 24-32, ACM Press, 1982.

14. Golumbic, M. C.: Algorithmic Graph Theory and Perfect Graphs. Academic

Press, 1980.

15. Holger, H. H., Stützle, T.: SATLIB: An Online Resource for Research on SAT.

Proceedings of Theory and Applications of Satisfiability Testing, 4th Interna-

tional Conference (SAT 2000), pp.283-292, IOS Press, 2000,

http://www.satlib.org, [March 2011].

http://www.cs.toronto.edu/~fbacchus/sat.html
http://minisat.se/MiniSat.html
http://www.satlib.org/

39

16. Jackson, P., Sheridan, D.: Clause Form Conversions for Boolean Circuits.

Theory and Applications of Satisfiability Testing, 7th International Conference

(SAT 2004), Revised Selected Papers, pp. 183–198, Lecture Notes in Computer

Science 3542, Springer 2005.

17. Papadimitriou, C.: Computational Complexity. Addison Wesley, 1994.

18. Petke, J., Jeavons, P.: Local Consistency and SAT-Solvers. Proceedings of the

Principles and Practice of Constraint Programming - 16th International Confe-

rence (CP 2010), pp. 398-413, Lecture Notes in Computer Science 6308, Sprin-

ger 2010.

19. Seidel, R.: On the Complexity of Achieving K-Consistency. Technical Report,

University of British Columbia Vancouver, BC, Canada,1983.

20. Subbarayan, S., Pradhan, D., K.: NiVER: Non Increasing Variable Elimination

Resolution for Preprocessing SAT Instances. Proceedings of The 7th Interna-

tional Conference on Theory and Applications of Satisfiability Testing (SAT

2004), pp. 276-291, LNCS 3542, Springer 2005, http://www.itu.dk/people

/sathi/niver.html, [July 2011].

21. Surynek, P.: Solving Difficult SAT Instances Using Greedy Clique Decomposi-

tion. Proceedings of the 7th Symposium on Abstraction, Reformulation, and

Approximation (SARA 2007), LNAI 4612, pp. 359-374, Springer, 2007.

22. Surynek, P.: Making Path Consistency Stronger for SAT. Proceedings of the

Annual ERCIM Workshop on Constraint Solving and Constraint Logic Pro-

gramming (CSCLP 2008), ISTC-CNR, 2008.

23. Surynek, P.: An Adaptation of Path Consistency for Boolean Satisfiability: a

Theoretical View of the Concept. Proceedings of the Annual ERCIM Workshop

on Constraint Solving and Constraint Logic Programming, 2010 (CSCLP 2010),

pp. 16-30, Fraunhofer FIRST, 2010.

24. Surynek, P.: Between Path-Consistency and Higher Order Consistencies in Boo-

lean Satisfiability. Proceedings of the Annual ERCIM Workshop on Constraint

Solving and Constraint Logic Programming, 2011 (CSCLP 2011), York, United

Kingdom, pp. 120-134, University of York, 2011.

25. Surynek, P.: sigmaSAT / preprocessSIGMA - a collection of experimental SAT

processing tools. Research web page, Charles University in Prague, 2011,

http://ktiml.mff.cuni.cz/~surynek/index.html.php?select=software&product=sig

masat, [July 2011].

http://www.itu.dk/people%20/sathi/niver.html
http://www.itu.dk/people%20/sathi/niver.html
http://ktiml.mff.cuni.cz/~surynek/index.html.php?select=software&product=sigmasat
http://ktiml.mff.cuni.cz/~surynek/index.html.php?select=software&product=sigmasat

40

26. Torán, J.: The Hardness of Graph Isomorphism. SIAM Journal on Computing, ,

pp. 1093-1108, volume 33, number 5, SIAM, 2004.

27. Walsh, T.: SAT vs. CSP. Proceedings of the 6th International Conference on

Principles and Practice of Constraint Programming, 441-456, LNCS 1894,

Springer Verlag, 2000.

