
Simple Direct Propositional Encoding of
Cooperative Path Finding

Simplified Yet More

Pavel Surynek

Faculty of Mathematics and Physics
Charles University in Prague

Czech Republic

 MICAI 2014, Tuxtla Gutiérrez, Mexico

Cooperative Path-Finding (CPF)

Pavel Surynek

 Agents can move only
 each agent needs to relocate itself
 initial and goal location

 Physical limitations
 agents must not collide with each other
 must avoid obstacles

 Abstraction
 environment – undirected graph G=(V,E)

• vertices V – locations in the environment
• edges E – passable region between neighboring locations

 agents – items placed in vertices
• at most one agents per vertex
• at least one vertex empty to allow movements

A

B

abstraction

MICAI 2014

CPF Formally

Pavel Surynek

 A quadruple (G, A, α0, α+), where
 G=(V,E) is an undirected graph
 A = {a1,a2,...,aμ}, where μ<|V| is a set of agents
 α0: A V is an initial arrangement of agents

• uniquely invertible function

 α+: A V is a goal arrangement of agents
• uniquely invertible function

 Time is discrete – time steps
 Moves/dynamicity

 depends on the model
 agent moves into unoccupied neighbor

• no other agent is entering the same target

 sometimes train-like movement is allowed
• only the leader needs to enter unoccupied vertex

1 2 3

all moves at once

MICAI 2014

Solution to CPF

Pavel Surynek

 Solution of (G, A, α0, α+)
 sequence of arrangements of agents
 (i+1)-th arrangement obtained from i-th by legal moves
 the first arrangement determined by α0

 the last arrangement determined by α+
• all the agents in their goal locations

• The length of solution sequence = makespan
 optimal/sub-optimal makespan

v1

v2

v3

v5

v4

v8

v7
1

2

3

α0 α+

v6 v9

v1

v2

v3

v5

v4

v8

v7

2

3

v6 v9
1

 [v1, v4, v7, v8, v9, v9, v9]

 [v2, v2, v1, v4, v7, v8, v8]

 [v3, v3, v3, v2, v1, v4, v7]

makespan=7

1 2 3 4 5 6 7

Time step:

Solution of an instance of cooperative

path-finding on a graph with A={1,2,3}

MICAI 2014

Motivation for CPF

Pavel Surynek

 Container rearrangement
(agent = container)

 Heavy traffic
(agent = automobile (in jam))

 Data transfer
(agent = data packet)

 Ship avoidance
(agent = ship)

MICAI 2014

CPF as SAT

Pavel Surynek

 SAT = propositional satisfiability
 a formula φ over 0/1 (false/true) variables
 Is there a valuation under which φ evaluates to 1/true?

• NP-complete problem

 SAT solving and CPF
 powerful SAT solvers

• MiniSAT, clasp, glucose, glue-MiniSAT, crypto-MiniSAT, …
• intelligent search, learning, restarts, heuristics, …

 CPF  SAT
• all the advanced techniques accessed almost for free

 Translation
 given a CPF Σ=(G, A, α0, α+) and a makespan η
 construct a formula φ

• satisfiable iff Σ has a solution of makespan η

(x ∨¬y) ∧ (¬x ∨ y)
Satisfied for x = 1, y = 1

MICAI 2014

Encoding of CPF

Pavel Surynek

 How to encode a question if there is a solution of makespan η?
 Build time expansion network

 Represent arrangements of agents at steps 1,2…,η
 step 1 … α0
 step η … α+

 Encode dynamicity of CPF (valid transitions)
 consecutive arrangements must be obtainable by

valid moves
 Encoding design issues

 (i) suggest propositional variables
 represent arrangement of agents in graph G over time steps 1,2…,η

 (ii) introduce constraints (clauses)
 remove non-arrangements (more than one agent in a vertex)
 remove invalid transitions (agents collide)

MICAI 2014

Xj,k
i

time

V

A

DIRECT Encoding of CPF

Pavel Surynek

 The design of propositional variables
 recall what we need to model

 A = {a1, a2, …, aμ}
 a set of agents

 V={v1, v2, ..., vn}
 a set of vertices

 time steps 1,2…,η

 Xj,k
i {true, false}

• TRUE iff agent ak appears in vj at time step i
• allow to represent invalid states

 The design of constraints
 rule out invalid states (non-arrangements)
 enforce valid transitions between time steps

 many binary clauses
 at most one agent is placed in a vertex at each time step
 support unit propagation

MICAI 2014

Auxiliary Variables

Pavel Surynek

 Auxiliary variables allow to build the CNF formula in a
hierarchical manner
 relocation of agent ak

 at time step i
 from vertex vj to vertex vl

 target vl
 must be empty at time step i

 source vj
 must be empty at time step i+1

 relocation in terms of clauses

 Xj,k
i ∧ Xl,k

i ⇒ (⋀h=1
μ Xj,h

i) ∧ (⋀h=1
μ Xl,h

i+1)

 emptiness constraints are the same for all the agents

MICAI 2014

vj

vl

ak

step i

vj

vl
ak

step i+1

relocation

occurred

target vj

is empty at i

source vl

is empty at i+1

SIMPLIFIED Encoding

Pavel Surynek

 Repeating sub-formulae can be replaced with auxiliary variable

 Xj,k
i ∧ Xl,k

i ⇒ (⋀h=1
μ Xj,h

i) ∧ (⋀h=1
μ Xl,h

i+1)

 develops into 2μ ternary clauses

 Introduce auxiliary propositional variable Ej
i{true, false}

 TRUE iff vertex vj is empty at time step i

 replace original constraint with Xj,k
i ∧ Xl,k

i ⇒ Ej
i ∧ El

i+1

 develops into 2 ternary clauses

 Introduce the meaning of auxiliary variables
 Ej

i ⇒ (⋀h=1
μ Xj,h

i)

 develops into μ binary clauses

 Fewer clauses but more decision variables

MICAI 2014

independent of

relocated agent ak

independent of

relocated agent ak

Encoding Size Evaluation

Pavel Surynek

 Comparison with previous encodings
 INVERSE [Surynek, PRICAI 2012]

 based on bit-vectors
 comparison with domain independent encodings from SATPlan [Kautz, Selman, 1999]

and SASE encoding [Huang, Chen, Zhang, 2010]

 ALL-DIFFERENT [Surynek, ICTAI 2012]
 based on bit-vectors and the all-different constraint

 DIRECT
 only the decision variables (no auxiliary ones)

MICAI 2014

Setup: 4-connected grid, random initial arrangement and goal, 10% obstacles

16 time steps

Grid 8⨯8
INVERSE ALL-DIFFERENT DIRECT SIMPLIFIED |Agents|

1
#Variables

#Clauses

Ratio
Length

8 358.7
31 327.9

3.748
2.616

1 489.3
7 930.4

5.325
3.057

814.4
23 241.9

28.539
2.149

1 628.8
3 384.6

2.078
2.550

4
10 019.5
55 437.0

5.532
2.641

7 834.5
34 781.9

4.440
3.103

3 257.6
115 934.3

35.589
2.272

4 072.0
17 997.8

4.420
2.374

16
11 680.3
91 344.5

7.820
3.127

67 088.3
216 745.4

3.231
3.147

13 030.4
840 540.6

64.506
2.505

13 844.8
150 259.2

10.853
2.180

32
12 510.7

122 170.3

9.765
3.733

230 753.0
646 616.2

2.802
3.168

26 060.8
2 738 584.7

105.084
2.621

26 875.2
510 672.1

19.002
2.111

Runtime Evaluation

Pavel Surynek

 Comparison with previous encodings + A*-based
ID+OD [Standley, IJCAI 2011]
 same setup as in the size evaluation

|agents|

MICAI 2014

Grid 8⨯8
1 2 4 8 12 16 20 24

|Agents|

Makespan 6.4 6.1 8.1 10.5 9.8 11.0 11.9 12.7

0.001

0.01

0.1

1

10

100

1000

1 2 4 6 8 10 12 14 16 18 20 22 24

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Runtime | Grid 8⨯8 | 10% obstacles

INVERSE

ALL-DIFFERENT

OD+ID

DIRECT

SIMPLIFIED

 SIMPLIFIED encoding
performs as best for
higher number agents

Conclusions and Observations

Pavel Surynek

 CPF as SAT
 Advantages

 search techniques
 advanced search techniques from SAT solvers accessed

 modularity
 exchangeable modules – SAT solver, encoding

 Disadvantages
 energy extensive solutions

 agents move too much

 SIMPLIFIED Encoding
 space efficient

 small number of variables and clauses

 time efficient
 can be solved faster than previous encodings
 SAT-based approach with SIMPLIFIED encoding outperforms

A*-based approach

MICAI 2014

