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Abstract. We address multi-agent path finding (MAPF) with contin-
uous movements and geometric agents, i.e. agents of various geometric
shapes moving smoothly between predefined positions. We analyze a new
solving approach based on satisfiability modulo theories (SMT) that is
designed to obtain optimal solutions with respect to common cumulative
objectives. The standard MAPF is a task of navigating agents in an undi-
rected graph from given starting vertices to given goal vertices so that
agents do not collide with each other in vertices or edges of the graph. In
the continuous version (MAPFR), agents move in an n-dimensional Eu-
clidean space along straight lines that interconnect predefined positions.
Agents themselves are geometric objects of various shapes occupying
certain volume of the space - circles, polygons, etc. We develop concepts
for circular omni-directional agents having constant velocities in the 2D
plane but a generalization for different shapes is possible. As agents can
have different shapes/sizes and are moving smoothly along lines, a move-
ment along certain lines done with small agents can be non-colliding
while the same movement may result in a collision if performed with
larger agents. Such a distinction rooted in the geometric reasoning is not
present in the standard MAPF. The SMT-based approach for MAPFR

called SMT-CBSR reformulates previous Conflict-based Search (CBS)
algorithm in terms of SMT. Lazy generation of constraints is the key
idea behind the previous algorithm SMT-CBS. Each time a new conflict
is discovered, the underlying encoding is extended with new to eliminate
the conflict. SMT-CBSR significantly extends this idea by generating also
the decision variables lazily. Generating variables on demand is needed
because in the continuous case the number of possible decision variables
is potentially uncountable hence cannot be generated in advance as in
the case of SMT-CBS. We compared SMT-CBSR and adaptations of
CBS for the continuous variant of MAPF experimentally.

Keywords: multi-agent path finding (MAPF), satisfiability modulo the-
ory (SMT), continuous time, continuous space, makespan optimal solu-
tions, sum-of-costs optimal solutions, geometric agents
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1 Introduction

Multi-agent path finding (MAPF) [13,21,22,23,25,28,33] is the task of navigating
agents from given starting positions to given individual goals. Usually MAPF
is understood to be a discrete problem that takes place in undirected graph
G = (V,E) where agents from set A = {a1, a2, ..., ak} are placed in its vertices.
The constraint that there is at most one agent per vertex is followed in the
basic variant. The initial configuration of agents in vertices of the graph can
be written as an assignment α0 : A → V and similarly the goal configuration
as α+ : A → V . The task of navigating agents can be formally expressed as a
task of transforming the initial configuration of agents α0 : A→ V into the goal
configuration α+ : A→ V .

In the standard MAPF, movements are instantaneous and are possible into
vacant neighbors assuming no other agent is entering the same target vertex 1.
We usually denote the configuration of agents at discrete time step t as αt : A→
V . Non-conflicting movements transform configuration αt instantaneously into
next configuration αt+1 so we do not consider what happens between t and t+1.

To reflect various aspects of real-life applications variants of MAPF have been
introduced such as those considering kinematic constraints [10], large agents [15],
or deadlines [17] - see [16] for more variants.

This work focuses on an extension of MAPF introduced only recently [1,32]
that considers continuous time and space and continuous movements of agents
between predefined positions placed arbitrarily in the n-dimensional Euclidean
space. The continuous version will be denoted as MAPFR. It is natural in
MAPFR to assume geometric agents of various shapes that occupy certain vol-
ume in the space - circles in the 2D space, polygons, spheres in the 3D space
etc. In contrast to MAPF, where the collision is defined as the simultaneous
occupation of a vertex by two agents, collisions are defined as any spatial over-
lap of agents’ bodies in MAPFR or a an occurrence that is too close to each
other. Agents move along straight lines connecting predefined positions. Differ-
ent shapes of agents’ bodies play a role. Hence for example a movement along
two distinct lines that is collision free when done with small agents may turn
into a collision if performed with large agents.

The motivation behind introducing MAPFR is the need to construct more
realistic paths in many applications such as controlling fleets of robots or aerial
drones [11,8] where continuous reasoning is closer to the reality than the standard
MAPF.

1.1 Contribution

The contribution of this paper consists in showing how to apply satisfiability
modulo theory (SMT) reasoning [6,18] in MAPFR solving. This is an extension

1 Different versions of MAPF permit entering of a vertex being simultaneously vacated
by another agent excluding the trivial case when agents swap their position across
an edge.
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of the conference paper [30] where the usage of SMT paradigm for the makespan
optimal solving of MAPFR has been described. In this paper, we further improve
the concept and adapt it for the sum-of-costs optimal solving.

The SMT paradigm constructs decision procedures for various complex logic
theories by decomposing the decision problem into the propositional part having
arbitrary Boolean structure and the theory part that is restricted on the con-
junctive fragment. We introduce an SMT-based algorithm for finding makespan
optimal solutions to MAPFR. Extending the algorithm by nogood recording en-
ables finding solutions that are sum-of-costs optimal.

1.2 Related Work and Organization

The original version of the SMT-based approach focuses on makespan optimal
MAPF solving and builds on top of the Conflict-based Search (CBS) algorithm
[24,22]. Makespan optimal solutions minimize the overall time needed to relocate
all agents into their goals.

CBS tries to solve MAPF lazily by adding conflict elimination constraints
on demand. It starts with the empty set of constraints. The set of constraints
is iteratively refined with new conflict elimination constraints after conflicts are
found in solutions for the incomplete set of constraints. Since conflict elimination
constraints are disjunctive (they forbid occurrence of one or the other agent in
a vertex at a time) the refinement in CBS is carried out by branching in the
search process.

CBS can be adapted for MAPFR by implementing conflict detection in con-
tinuous time and space while the high-level framework of the CBS algorithm
remains the same as shown in [1]. In the SMT-based approach we are trying to
build an incomplete propositional model so that if a given MAPFR ΣR has a
solution of a specified makespan then the model is solvable (but the opposite
implication generally does not hold). This is similar to the previous SAT-based
[5] MAPF solving [27,31] where a complete propositional model has been con-
structed (that is, the given MAPF has a solution of a specified makespan if and
only is the model is solvable).

The propositional model in the SMT-based approach in constructed lazily
through conflict elimination refinements as done in CBS. The incompleteness of
the model is inherited from CBS that adds constraints lazily. This is in contrast to
SAT-based methods like MDD-SAT [31] where all constraints are added eagerly
resulting in a complete model. We call our new algorithm SMT-CBSR. The major
difference of SMT-CBSR from CBS is that instead of branching the search we
only add a disjunctive constraint to eliminate the conflict in SMT-CBSR. Hence,
SMT-CBSR does not branch the search at all at the high-level (the model is
incrementally refined at the high-level instead).

Similarly as in the SAT-based MAPF solving we use decision propositional
variables indexed by agent a, vertex v, and time t with the meaning that if the
variable is TRUE agent a appears in v at time t. However the major technical
difficulty with the continuous version of MAPF is that we do not know all nec-
essary decision variables in advance due to continuous time. After a conflict is
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discovered we may need new decision variables to avoid that conflict. For this
reason we introduce a special decision variable generation algorithm.

The paper is organized as follows: we first introduce MAPFR formally. Then
we recall a variant of CBS for MAPFR. Details of the novel SMT-based solving
algorithm SMT-CBSR for finding makespan optimal solutions follow. Next, an
experimental evaluation of SMT-CBSR against the continuous version of CBS
is shown. We also show a brief comparison with the standard MAPF. Finally
we introduce nogood recording into the SMT-CBSR to enable optimization with
respect to the sum-of-costs objective.

1.3 MAPF with Continuous Time

We follow the definition of MAPF with continuous time denoted MAPFR from
[1] and [32]. MAPFR shares several components with the standard MAPF: the
underlying undirected graph G = (V,E), set of agents A = {a1, a2, ..., ak}, and
the initial and goal configuration of agents: α0 : A→ V and α+ : A→ V .

Definition 1. (MAPFR) Multi-agent path finding with continuous time (MAPFR)
is a 5-tuple ΣR = (G = (V,E), A, α0, α+, ρ) where G, A, α0, α+ are from the
standard MAPF and ρ determines continuous extensions as follows:

– ρ.x(v), ρ.y(v) for v ∈ V represent the position of vertex v in the 2D plane;
to simplify notation we will use xv for ρ.x(v) and yv for ρ.x(v)

– ρ.velocity(a) for a ∈ A determines constant velocity of agent a; simple no-
tation va = ρ.velocity(a)

– ρ.radius(a) for a ∈ A determines the radius of agent a; we assume that
agents are circular discs with omni-directional ability of movements; simple
notation ra = ρ.radius(a)

Naturally we can define the distance between a pair of vertices u, v with
{u, v} ∈ E as dist(u, v) =

√
(xv − xu)2 + (yv − yu)2. Next we assume that

agents have constant speed, that is, they instantly accelerate to va from an
idle state. The major difference from the standard MAPF where agents move
instantly between vertices is that in MAPFR continuous movement of an agent
between a pair of vertices (positions) along the straight line interconnecting them
takes place. Hence we need to be aware of the presence of agents at some point
in the 2D plane on the lines interconnecting vertices at any time.

Collisions may occur between agents due to their size which is another dif-
ference from the standard MAPF. In contrast to the standard MAPF, collisions
in MAPFR may occur not only in a single vertex or edge but also on pairs of
edges (on pairs of lines interconnecting vertices). If for example two edges are
too close to each other and simultaneously traversed by large agents then such a
condition may result in a collision. Agents collide whenever their bodies overlap
2.

2 In our current implementation we followed a more cautious definition of the collision
- it occurs even if agents appear too close to each other.
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We can further extend the set of continuous properties by introducing the
direction of agents and the need to rotate agents towards the target vertex before
they start to move towards the target (agents are no more omni-directional).
The speed of rotation in such a case starts to play a role. Also agents can be of
various shapes not only circular discs [15]. For simplicity we elaborate our solving
concepts for the above basic continuous extension of MAPF with circular agents
only. We however note that all developed concepts can be adapted for MAPF
with more continuous extensions like directional agents which only adds another
dimension to indices of propositional variables.

A solution to given MAPFR ΣR is a collection of temporal plans for individ-
ual agents π = [π(a1), π(a2), ..., π(ak)] that are mutually collision-free. A tem-
poral plan for agent a ∈ A is a sequence π(a) = [((α0(a), α1(a)), [t0(a), t1(a)));
((α1(a), α2(a)), [t1(a), t2(a))); ...;((αm(a)−1(a), αm(a)(a)), (tm(a)−1(a), tm(a)(a)))]
wherem(a) is the length of individual temporal plan and each pair (αi(a), αi+1(a)),
[ti(a), ti+1(a))) in the sequence corresponds to traversal event between a pair of
vertices αi(a) and αi+1(a) starting at time ti(a) and finished at ti+1(a) (exclud-
ing).

It holds that ti(a) < ti+1(a) for i = 0, 1, ...,m(a) − 1. Moreover consecutive
vertices must correspond to edge traversals or waiting actions, that is: {αi(a),
αi+1(a)} ∈ E or αi(a) = αi+1(a); and times must reflect the speed of agents for
non-wait actions, that is:

αi(a) 6= αi+1(a)⇒ ti+1(a)− ti(a) =
dist(αi(a), αi+1(a))

va
.

In addition to this, agents must not collide with each other. One possible
formal definition of a geometric collision is as follows:

Definition 2. (collision) A collision between individual temporal plans π(a) =

[((αi(a), αi+1(a)), [ti(a), ti+1(a)))]
m(a)
i=0 and π(b) = [((αi(b), αi+1(a)), [ti(b), ti+1(b)))]

m(b)
i=0

occurs if the following condition holds:

– ∃i ∈ {0, 1, ...,m(a)} and ∃j ∈ {0, 1, ...,m(b)} such that:

• dist([xαi(a), yαi(a); xαi+1(a), yαi+1(a)]; [xαj(b), yαj(b); xαj+1(b), yαj+1(b)])
< ra + rb

• [ti(a), ti+1(a))∩ [tj(b), tj+1(b)) 6= ∅
(a vertex or an edge collision - two agents simultaneously occupy the same
vertex or the same edge or traverse edges that are too close to each other)

The distance between two lines P and Q given by their endpoint coordinates
P = [x1, y1;x2, y2] andQ = [x′1, y

′
1;x′2, y

′
2] denoted dist([x1, y1;x2, y2]; [x′1, y

′
1;x′2, y

′
2])

is defined as the minimum distance between any pair of points p ∈ P and q ∈ Q:
min{dist(p, q) | p ∈ P ∧ q ∈ Q}. The definition covers degenerate cases where a
line collapses into a single point. In such a case the definition of dist normally
works as the distance between points and between a point and a line.

The definition among other types of collisions covers also a case when an
agent waits in vertex v and another agent passes through a line that is too
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close to v. We note that situations classified as collisions according to the above
definition may not always result in actual collisions where agents’ bodies overlap;
the definition is overcautious in this sense.

Alternatively we can use more precise definition of collisions that reports
collisions if and only if an actual overlap of agents’ bodies occurs. This however
requires more complex equations or simulations and cannot be written as simple
as above. The presented algorithmic framework is however applicable for any
kind of complex definition of collision as the definition enters the process as an
external parameter.

The duration of individual temporal plan π(a) is called an individual makespan;
denoted µ(π(a)) = tm(a). The overall makespan of MAPFR solution π = [π(a1), π(a2),

..., π(ak)] is defined as maxki=1(µ(π(ai))).

The sum-of-costs is another important objective used in the context of
MAPF [23,32]. Calculated as the summation over all agents of times they spend
moving before arriving to the goal. Due to its more complex calculation, the
sum-of-costs objective is more challenging to be integrated in the SMT-based
solving framework.

The individual makespan is sometimes called an individual cost. A sum-of-
cost for given temporal plan π(a) is defined as

∑k
i=1 µ(π(ai))

An example of MAPFR and makespan optimal solution is shown in Fig-
ure 1. We note that the standard makespan optimal solution yields makespan
suboptimal solution when interpreted as MAPFR.
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π(a3): 
3 → 6 [0.000, 2.236) 
6 → 5 [2.236, 3.236) 
5 → 5 [3.236, 4.650) 
 
μ = 4.650 (MAPFR) 
 

π(a2): 
2 → 4 [0.000, 1.000) 
4 → 4 [1.000, 3.236) 
4 → 6 [3.236, 4.236) 
6 → 6 [4.236, 4.650) 
  

π(a1) 
1 → 6 
6 → 3 
3 → 7 
 

π(a2) 
2 → 4 
4 → 1 
1 → 6 
 π(a3) 

3 → 7 
7 → 2 
2 → 5 
 
μ = 3 (MAPF) 
μ = 6.472 (MAPFR) 
 

 

ρ.speed = 1.0 ρ.diameter = 0.2 
 

MAPFR 
  

MAPF  
  

Fig. 1. An example of MAPFR instance on a [3, 1, 3]−graph with three agents and its
makespan optimal solution (an optimal solution of the corresponding standard MAPF
is shown too) [30].

Through the straightforward reduction of MAPF to MAPFR it can be ob-
served that finding a makespan optimal solution with continuous time is an
NP-hard problem [19,29,35].
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2 Solving MAPF with Continuous Time

We will describe here how to find optimal solution of MAPFR using the conflict-
based search (CBS) [22]. CBS uses the idea of resolving conflicts lazily; that is, a
solution of MAPF instance is not searched against the complete set of movement
constraints. Instead of forbidding all possible collisions between agents we start
with initially empty set of collision forbidding constraints that gradually grows
as new conflicts appear. CBS originally developed for MAPF can be modified
for MAPFR as shown in [1]: let us call the modification CBSR.

2.1 Conflict-based Search

CBSR is shown using pseudo-code in Algorithm 1. The high-level of CBSR

searches a constraint tree (CT) using a priority queue (ordered according to
the makespan or other cumulative cost) in the breadth first manner. CT is a
binary tree where each node N contains a set of collision avoidance constraints
N.constraints - a set of triples (ai, {u, v}, [t0, t+)) forbidding occurrence of agent
ai in edge {u, v} (or in vertex u if u = v) at any time between [t0, t+), a solution
N.π - a set of k individual temporal plans, and the makespan N.µ of the current
solution.

Algorithm 1: Basic CBSR algorithm for makespan optimal MAPF
solving with continuous time, pseudo-code from [30]

1 CBSRMAKE (ΣR = (G = (V,E), A, α0, α+, ρ))
2 R.constraints← ∅
3 R.π ← {shortest temporal plan from α0(ai) to α+(ai) | i = 1, 2, ..., k}
4 R.µ← maxki=1 µ(N.π(ai))
5 Open← ∅
6 insert R into Open
7 while Open 6= ∅ do
8 N ← minµ(Open)
9 remove-Minµ(Open)

10 collisions← validate-Plans(N.π)
11 if collisions = ∅ then
12 return N.π

13 let (ai, {u, v}, [t0, t+))× (aj , {u′, v′}, [t′0, t′+)) ∈ collisions
14 [τ0, τ+)← [t0, t+) ∩ [t′0, t

′
+)

15 for each (a, {w, z}) ∈ {(ai, {u, v}), (aj , {u′, v′})} do
16 N ′.constraints← N.constraints ∪ {(a, {w, z}, [τ0, τ+))}
17 N ′.π ← N.π
18 update(a, N ′.π, N ′.conflicts)

19 N ′.µ←
∑k
i=1 µ(N ′.π(ai))

20 insert N ′ into Open
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The low-level process in CBSR associated with node N searches temporal
plan for individual agent with respect to set of constraints N.constraints. For
given agent ai, this is the standard single source shortest path search from
α0(ai) to α+(ai) that at time t must avoid a set of edges (vertices) {{u, v} ∈
E | (ai, {u, v}, [t0, t+)) ∈ N.constraints ∧ t ∈ [t0, t+)}. Various intelligent single
source shortest path algorithms can be applied here such as A* [9] .

CBSR stores nodes of CT into priority queue Open sorted according to the
ascending makespan. At each step CBS takes node N with the lowest makespan
from Open and checks if N.π represent non-colliding temporal plans. If there
is no collision, the algorithms returns valid MAPFR solution N.π. Otherwise
the search branches by creating a new pair of nodes in CT - successors of N .
Assume that a collision occurred between agents ai and aj when ai traversed
{u, v} during [t0, t+) and aj traversed {u′, v′} during [t′0, t

′
+). This collision can

be avoided if either agent ai or agent aj does not occupy {u, v} or {u′, v′}
respectively during [t0, t+)∩ [t′0, t

′
+) = [τ0, τ+). These two options correspond to

new successor nodes of N : N1 and N2 that inherit set of conflicts from N as
follows: N1.conflicts = N.conflicts ∪{(ai, {u, v}, [τ0, τ+))} and N2.conflicts =
N.conflicts ∪{(aj , {u′, v′}, [τ0, τ+))}. N1.π and N1.π inherit plans from N.π
except those for agent ai and aj respectively that are recalculated with respect
to the new sets of conflicts. After this N1 and N2 are inserted into Open.

Definition of collisions comes as a parameter to the algorithm though the
implementation of validate-Plans procedure. We can switch to the less cautious
definition of collisions that reports a collision after agents actually overlap their
bodies. This can be done through changing the validate-Plans procedure while
the rest of the algorithm remains the same.

2.2 A Satisfiability Modulo Theory (SMT) Approach

A close look at CBS reveals that it operates similarly as problem solving in
satisfiability modulo theories (SMT) [6,18]. The basic use of SMT divides a sat-
isfiability problem in some complex theory T into an abstract propositional part
that keeps the Boolean structure of the decision problem and a simplified deci-
sion procedure DECIDET that decides fragment of T restricted on conjunctive
formulae. A general T -formula Γ being decided for satisfiability is transformed
to a propositional skeleton by replacing its atoms with propositional variables.
The standard SAT-solving procedure then decides what variables should be as-
signed TRUE in order to satisfy the skeleton - these variables tells what atoms
hold in Γ . DECIDET then checks if the conjunction of atoms assigned TRUE
is valid with respect to axioms of T . If so then satisfying assignment is returned
and we are finished. Otherwise a conflict from DECIDET (often called a lemma)
is reported back to the SAT solver and the skeleton is extended with new con-
straints resolving the conflict. More generally not only new constraints are added
to resolve a conflict but also new variables i.e. atoms can be added to Γ .
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The above observation inspired us to the idea to rephrase CBSR in terms of
SMT. T will be represented by a theory with axioms describing movement rules
of MAPFR; a theory we will denote TMAPFR

3.
A plan validation procedure known from CBS will act as DECIDEMAPFR

and will report back a set of conflicts found in the current solution. The propo-
sitional part working with the skeleton will be taken from existing propositional
encodings of the standard MAPF such as the MDD-SAT [31] provided that con-
straints forbidding conflicts between agents will be omitted (at the beginning).
In other words, we only preserve constraints ensuring that propositional assign-
ments form proper paths for agents but each agent is treated as if it is alone in
the instance.

2.3 Decision Variable Generation

MDD-SAT introduces decision variables X tv(ai) and Etu,v(ai) for discrete time-
steps t ∈ {0, 1, 2, ...} describing occurrence of agent ai in v or the traversal of
edge {u, v} by ai at time-step t. We refer the reader to [31] for the details of how
to encode constraints of top of these variables. As an example we show here a
constraint stating that if agent ai appears in vertex u at time step t then it has
to leave through exactly one edge connected to u or wait in u.

X tu(ai)⇒
∨

v | {u,v}∈E

Etu,v(ai) ∨ Etu,u(ai), (1)

∑
v | {u,v}∈E

Etu,v(ai) + Etu,u(ai) ≤ 1 (2)

Vertex collisions expressed for example by the following constraint are omit-
ted. The constraint says that in vertex v and time step t there is at most one
agent. ∑

ai∈A | v∈V

X tv(ai) ≤ 1 (3)

A significant difficulty in MAPFR is that we need decision variables with
respect to continuous time. Fortunately we do not need a variable for any possible
time but only for important moments.

If for example the duration of a conflict in neighbor v of u is [t0, t+) and
agent ai residing in u at t ≥ t0 wants to enter v then the earliest time ai can do
so is t+ since before it would conflict in v (according to the above definition of
collisions). On the other hand if ai does not want to waste time (let us note that
we search for a makespan optimal solution), then waiting longer than t+ is not

desirable. Hence we only need to introduce decision variable Et+u,v(ai) to reflect
the situation.
3 The formal details of the theory TMAPFR are not relevant from the algorithmic point

of view. Nevertheless let us note that the signature of TMAPFR consists of non-logical
symbols describing agents’ positions at a time such as at(a, u, t) - agent a at vertex
u at time t.
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Algorithm 2: Generation of decision variables in the SMT-based algo-
rithm for MAPFR solving, pseudo-code from [30]

1 generate-Decisions (ΣR = (G = (V,E), A, α0, α+, ρ), ai, conflicts, µmax)
2 Var← ∅
3 for each a ∈ A do
4 Open← ∅
5 insert (α0(a), 0) into Open

6 Var← Var ∪ {X t0α0(a)
(a)}

7 while Open 6= ∅ do
8 (u, t)← mint(Open)
9 remove-Mint(Open)

10 if t ≤ µmax then
11 for each v such that {u, v} ∈ E do
12 ∆t← dist(u, v)/va
13 insert (v, t+∆t) into Open

14 Var← Var ∪ {Etu,v(a),X t+∆tv (a)}
15 for each v such that {u, v} ∈ E ∪ {u, u} do
16 for each (a, {u, v}, [t0, t+)) ∈ conflicts do
17 if t+ > t then
18 insert (u, t+) into Open

19 Var← Var ∪ {X t+u (a)}

20 return Var

Generally when having a set of conflicts we need to generate decision variables
representing occurrence of agents in vertices and edges of the graph at important
moments with respect to the set of conflicts. The process of decision variable
generation is formally described as Algorithm 2. It performs breadth-first search
(BFS) on G using two types of actions: edge traversals and waiting. The edge
traversal is the standard operation from BFS. Waiting is performed for every
relevant period of time with respect to the end-times in the set of conflicts of
neighboring vertices.

As a result each conflict during variable generation through BFS is treated
as both present and absent which in effect generates all possible important mo-
ments.

Procedure generate-Decision generates decision variables that correspond to
actions started on or before specified limit µmax. For example variables corre-
sponding to edge traversal started at t < µmax and finished as t′ > µmax are
included (line 10). Variables corresponding to times greater than µmax enable
determining what should be the next relevant makespan limit to test (see the
high-level algorithm for details). Assume having a decision node corresponding
to vertex u at time t at hand. The procedure first adds decision variables corre-
sponding to edge traversals from u to neighbors denoted v (lines 11-14). Then
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all possible relevant waiting actions in u with respect to its neighbors v are
generated. Notice that waiting with respect to conflicts in u are treated as well.

2.4 Eliminating Branching in CBS by Disjunctive Refinements

The SMT-based algorithm itself is divided into two procedures: SMT-CBSR

representing the main loop and SMT-CBS-FixedR solving the input MAPFR

for a fixed maximum makespan µ. The major difference from the standard CBS
is that there is no branching at the high-level. The set of conflicts is iteratively
collected during the entire execution of the algorithm whenever a collision is
detected.

Procedures encode-Basic and augment-Basic build formula F(µ) over deci-
sion variables generated using the aforementioned procedure. The encoding is
inspired by the MDD-SAT approach but ignores collisions between agents. That
is, F(µ) constitutes an incomplete model for a given input ΣR: ΣR is solvable
within makespan µ then F(µ) is satisfiable.

Conflicts are resolved by adding disjunctive constraints (lines 13-15 in Al-
gorithm 4). The collision is avoided in the same way as in the original CBS
that is one of the colliding agent does not perform the action leading to the
collision. Consider for example a collision on two edges between agents ai and
aj as follows: ai traversed {u, v} during [t0, t+) and aj traversed {u′, v′} during
[t′0, t

′
+).

These two movements correspond to decision variables Et0u,v(ai) and Et
′
0

u′,v′(aj)
hence elimination of the collision caused by these two movements can be ex-

pressed as the following disjunction: ¬Et0u,v(ai) ∨ ¬E
t′0
u′,v′(aj). At level of the

propositional formula there is no information about the semantics of a con-
flict happening in the continuous space; we only have information in the form
of above disjunctive refinements. The disjunctive refinements are propagated at
the propositional level from DECIDEMAPFR that verifies solutions of incomplete
propositional models.

The set of pairs of collected disjunctive conflicts is propagated across entire
execution of the algorithm (line 16 in Algorithm 4).

Algorithm 3 shows the main loop of SMT-CBSR. The algorithm checks if
there is a solution for given MAPFR ΣR of makespan µ. The algorithm starts
at the lower bound for µ that is obtained as the duration of the longest temporal
plan from individual temporal plans ignoring other agents (lines 3-4).

Then µ is iteratively increased in the main loop (lines 5-9). The algorithm
relies on the fact that the solvability of MAPFR w.r.t. cumulative objective like
the makespan behaves as a non decreasing monotonic function. Hence trying
increasing makespans eventually leads to finding the optimal makespan provided
we do not skip any relevant makespan µ. The next makespan to try will then
be obtained by taking the current makespan plus the smallest duration of the
continuing movement (line 19 of Algorithm 4). The iterative scheme for trying
larger makespans follows MDD-SAT [31].
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Algorithm 3: High-level of the SMT-based MAPFR solving - makespan
optimal version [30]

1 SMT-CBSRMAKE (ΣR = (G = (V,E), A, α0, α+, ρ))
2 conflicts← ∅
3 π ← {π∗(ai) a shortest temporal plan from α0(ai) to

α+(ai) | i = 1, 2, ..., k}
4 µ← maxki=1 µ(π(ai))
5 while TRUE do
6 (π, conflicts, µnext)← SMT-CBS-FixedRMAKE(ΣR, conflicts, µ)
7 if π 6= UNSAT then
8 return π

9 µ← µnext

3 Evaluation of the Makespan Optimal Version

In this section we present results of the experimentation with SMT-CBSR for
makespan optimal MAPFR solving. We implemented SMT-CBSR in C++ to
evaluate its performance 4. SMT-CBSR was implemented on top of Glucose 4
SAT solver [3] which ranks among the best SAT solvers according to recent SAT
solver competitions [4]. The incremental mode of the SAT solver has been used
- that is, when the formula has been modified the solver was not consulted from
scratch but instead learned clauses are preserved from the previous run.

It turned out to be important to generate decision variables in a more ad-
vanced way than presented in Algorithm 2. We need to prune out decisions
from that the goal vertex cannot be reached under given makespan bound µmax.
That is whenever we have a decision (u, t) such that t + ∆t > µmax, where
∆t = distestimate(u, α+(a))/va and distestimate is a lower bound estimate of
the distance between a pair of vertices, we rule out that decision from further
consideration. Moreover we apply a postprocessing step in which we iteratively
remove decisions that have no successors. The propositional model is generated
only after this preprocessing.

In addition to SMT-CBSR we re-implemented in C++ CBSR, currently the
only alternative solver for MAPFR based on own dedicated search [1]. The dis-
tinguishing feature of CBSR is that at the low-level it uses a more complex single
source shortest path algorithm that searches for paths that avoid forbidden in-
tervals, a so-called safe-interval path planning (SIPP) [34].

Our implementation of CBSR used the standard heuristics to improve the
performance such as the preference of resolving cardinal conflicts [7]. In the
preliminary tests with SMT-CBSR, we initially tried to resolve against single

4 The complete source codes will be made available to en-
able reproducibility of presented results on the author’s website:
http://users.fit.cvut.cz/surynpav/research/icaart2020

http://users.fit.cvut.cz/surynpav/research/icaart2020
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Algorithm 4: Low-level of the SMT-based MAPFR solving, makespan
optimal version [30]

1 SMT-CBS-FixedRMAKE(Σ
R, conflicts, µ)

2 Var← generate-Decisions(ΣR, conflicts, µ)

3 F(µ)← encode-Basic(Var, ΣR, conflicts, µ)
4 while TRUE do
5 assignment← consult-SAT-Solver(F(µ))
6 if assignment 6= UNSAT then
7 π ← extract-Solution(assignment)
8 collisions← validate-Plans(π) /* DECIDEMAPFR */
9 if collisions = ∅ then

10 return (π, ∅,UNDEF )

11 for each (ai, {u, v}, [t0, t+))× (aj , {u′, v; }, [t′0, t′+)) ∈ collisions do
12 Y ← (u = v) ? X t0u (ai) : Et0u,v(ai)

13 Z ← (u′ = v′) ? X t
′
0
u′ (aj) : Et

′
0
u′,v′(aj)

14 F(µ)← F(µ) ∪ {¬Y ∨ ¬Z}
15 [τ0, τ+)← [t0, t+) ∩ [t′0, t

′
+)

16 conflicts←
conflicts ∪ {(ai, {u, v}, [τ0, τ+)), (aj , {u′, v′}, [τ0, τ+))}

17 Var← generate-Decisions(ΣR, conflicts, µ)

18 F(µ)← augment-Basic(F(µ),Var, ΣR, conflicts, µ)

19 µnext ← min{t | X tu(ai) ∈ Var ∧ t > µ)}
20 return (UNSAT, conflicts, µnext)

cardinal conflict too but eventually it turned out to be more efficient to resolve
against all discovered conflicts (the presented pseudo-code shows this variant). 5

6

3.1 Benchmarks and Setup

SMT-CBSR and CBSR were tested on synthetic benchmarks consisting of layered
graphs, grids, game maps [26]. The layered graph of height h denoted [l1, l2, ..., lh]-
graph consists of h layers of vertices placed horizontally above each other in the
2D plane (see Figure 1 for [3, 1, 3]-graph). More precisely the i-th layer is placed
horizontally at y = i. Layers are centered horizontally and the distance between
consecutive points in the layer is 1.0. Size of all agents was 0.2 in radius.

We measured runtime and the number of decisions/iterations to compare the
performance of SMT-CBSR and CBSR. Small layered graphs consisting of 2 to
5 layers with up to 5 vertices per layer were used in tests. Three consecutive

5 All experiments were run on a system with Ryzen 7 3.0 GHz, 16 GB RAM, under
Ubuntu Linux 18.

6 To enable reproducibility of presented results we will provide complete source code
of our solvers on author’s web: http://users.fit.cvut.cz/surynpav/icaart2020.

http://users.fit.cvut.cz/surynpav/icaart2020
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Average runtime and makespan (μ) on selected layered graphs 

Graph CBSR SMT-CBSR μ MAPFR CBS μ MAPF 

[2,2] 2.78 1.22 2.41 0.01  2.00 

[3,1,3] 17.91 2.33 3.65 0.02  2.75 

[4,2,2,4] 19.34 4.78 3.80 0.02 2.67 

[5,3,1,3,5] 57.23 6.11 6.78 0.03 3.15 

[5,3,5,3,5] - 19.93 5.39 0.03 3.75 
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Fig. 2. Comparison of CBSR and SMT-CBSR in terms of average runtime, makespan,
and success rate on layered graphs. The standard CBS on the corresponding standard
MAPF is shown too (times are in seconds). Makespan is shown for the case when the
instance is interpreted as the standard MAPF and as MAPFR [30].

layers are always fully interconnected by edges. There is not edge across more
than three layers of the graphs. That is in graphs with more than 3 layers agents
cannot go directly to the goal vertex.

In all tests agents started in the 1-st layer and finished in the last h-th
layer. To obtain instances of various difficulties random permutations of agents
in the starting and goal configurations were used (the 1-st layer and h-th layer
were fully occupied in the starting and goal configuration respectively). If for
instance agents are ordered identically in the starting and goal configuration
with h ≤ 3, then the instance is relatively easy as it is sufficient that all agents
move simultaneously straight into their goals.

We also used grids of sizes 8×8 and 16×16 with no obstacles in our tests. Ini-
tial and goal configuration of agents have been generated randomly. In contrast
to MAPF benchmarks where grids are 4-connected we used interconnection with
all vertices in the neighborhood up to certain distance called 2k-neighborhood in
[1]. A similar setup has been used in game maps (Dragon Age). The difference
here is that the game maps are larger and contain obstacles.

Ten random instances were generated for individual graph. The timeout for
all tests has been set to 1 minute in layered graphs and small grids and 10
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Fig. 3. Comparison of CBSR and SMT-CBSR on 8 × 8 grid with 2k neighborhood
(k = 3) [30].

minutes for game maps. Results from instances finished under this timeout were
used to calculate average runtimes.

3.2 Comparison of MAPFR and MAPF Solving

Part of the results obtained in our experimentation with layered graphs is shown
in Figure 2. The general observation from our runtime evaluation is that MAPFR

is significantly harder than the standard MAPF. When continuity is ignored,
makespan optimal solutions consist of fewer steps. But due to regarding all edges
to be unit in MAPF, the standard makespan optimal solutions yield significantly
worse continuous makespan (this effect would be further manifested if we use
longer edges).

SMT-CBSR outperforms CBSR on tested instances significantly. CBSR reached
the timeout many more times than SMT-CBSR. In the absolute runtimes, SMT-
CBSR is faster by factor of 2 to 10 than CBSR.

In terms of the number of decisions, SMT-CBSR generates order of mag-
nitudes fewer iterations than CBSR. This is however expected as SMT-CBSR
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Fig. 4. Comparison of CBSR and SMT-CBSR on 16 × 16 grid with 2k neighborhood
(k = 3) [30].

shrinks the entire search tree into a single branch in fact. We note that branching
within the search space in case of SMT-CBSR is deferred into the SAT solver
where even more branches may appear.

In case of small grids and large maps (Figures 3, 4 and 5), the difference be-
tween CBSR and SMT-CBSR is generally smaller but still for harder instances
SMT-CBSR tends to have better runtime and success rate. We attribute the
smaller difference between the two algorithms to higher regularity in grids com-
pared to layered graphs that exhibit higher combinatorial difficulty.

4 Sum-of-Costs Bounds and Nogood Recording

We modified the SMT-based MAPFR solving framework for the sum-of-costs
objective. Again the SMT-based algorithm for the sum-of-costs variants is di-
vided into two procedures: SMT-CBSRSOC representing the main loop (Algorithm
5) and SMT-CBS-FixedRSOC solving the input MAPFR for a fixed maximum
makespan µ and sum-of-costs ξ (Algorithm 6).
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Fig. 5. Comparison of CBSR and SMT-CBSR on game maps (Dragon Age) with 2k

neighborhood (k = 3).

Procedures encode-Basic and augment-Basic in Algorithm 6 build a formula
according to given RDDs and the set of collected collision avoidance constraints.
New collisions are resolved lazily by adding mutexes (disjunctive constraints). A
collision is avoided in the same way as in the makespan optimal variant. Collision
eliminations are tried until a valid solution is obtained or until a failure for
current µ and ξ which means to try bigger makespan and sum-of-costs.
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Algorithm 5: High-level of SMT-CBSR for the sum-of-costs objective.

1 SMT-CBSRSOC (ΣR = (G = (V,E), A, α0, α+, ρ))
2 constraints ← ∅
3 π ← {π∗(ai) a shortest temporal plan from α0(ai) to

α+(ai) | i = 1, 2, ..., k}
4 µ← maxki=1 µ(π(ai)); ξ ←

∑k
i=1 µ(π(ai))

5 while TRUE do
6 (π, constraints, µnext, ξnext)← SMT-CBS-FixedRSOC(ΣR, constraints,

µ, ξ)
7 if π 6= UNSAT then
8 return π

9 µ← µnext; ξ ← ξnext

After resolving all collisions we check whether the sum-of-costs bound is
satisfied by plan π. This can be done easily by checking if X tu(ai) variables
across all agents together yield higher cost than ξ or not. If cost bound ξ is
exceeded then corresponding nogood is recorded and added to F(µ) and the
algorithm continues by searching for a new satisfying assignment to F(µ) now
taking all recorded nogoods into account. The nogood says that X tu(ai) variables
that jointly exceed ξ cannot be simultaneously set to TRUE .
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Fig. 6. Comparison of SMT-CBSR and CCBS on empty-16-16. Left: Success rate (the
ratio of solved instances out of 25 under 120 seconds), the higher plot is better. Right:
and sorted runtimes where the lower plot is better are shown.

Formally, the nogood constraint can be represented as a set of variables
{X t1u1

(a1), X t2u2
(a2), ... X tkuk

(ak)}. We say the nogood to be dominated by another

nogood {X t
′
1
u1(a1), X t

′
2
u2(a2), ... X t

′
k
uk(ak)} if and only if t′i ≤ ti for i = 1, 2, ...k

and ∃i ∈ {1, 2, ..., k} such that t′i < ti. To make the nogood reasoning more
efficient we do not need to store nogoods that are dominated by some previously
discovered nogood. In such case however, the single nogood does not forbid one
particular assignment but all assignments that could lead to dominated nogoods.
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Algorithm 6: Low-level of SMT-CBSR

1 SMT-CBS-FixedRSOC(Σ
R, cons, µ, ξ)

2 Rdd← build-RDDs(ΣR, cons, µ)

3 F(µ)← encode-Basic(Rdd, ΣR, cons, µ)
4 while TRUE do
5 assignment← consult-SAT-Solver(F(µ))
6 if assignment 6= UNSAT then
7 π ← extract-Solution(assignment)
8 collisions← validate-Plans(π)
9 if collisions = ∅ then

10 while TRUE do
11 nogoods ← validate-Cost(π, ξ)
12 if nogoods = ∅ then
13 return (π, ∅,UNDEF ,UNDEF )

14 F(µ)← F(µ) ∪ nogoods
15 assignment ← consult-SAT-Solver(F(µ))
16 if assignment = UNSAT then
17 (µnext, ξnext)← calc-Next-Bounds(µ, ξ, cons,Rdd)
18 return (UNSAT, cons, µnext, ξnext)

19 π ← extract-Solution(assignment)

20 else
21 for each (mi ×mj) ∈ collisions where

mi = (ai, (ui, vi), [t
0
i , t

+
i )) and mj = (aj , (uj , vj), [t

0
j , t

+
j )) do

22 F(µ)←F(µ)∧(¬Et
0
i ,t

+
i

ui,vi (ai)∨¬E
t0j ,t

+
j

uj ,vj (aj))

23 ([τ0i , τ
+
i ); [τ0j , τ

+
j ))← resolve-Collision(mi,mj)

24 cons← cons ∪ {[(ai, (ui, vi), [τ0i , τ+i ));

(aj , (uj , vj), [τ
0
j , τ

+
j ))]}

25 Rdd←build-RDDs(ΣR, cons, µ)

26 F(µ)← augment-Basic(Rdd, ΣR, cons)

27 (µnext, ξnext)← calc-Next-Bounds(µ, ξ, cons,Rdd)
28 return (UNSAT, cons, µnext, ξnext)

The set of pairs of collision avoidance constraints is propagated across en-
tire execution of the algorithm. Constraints originating from a single collision
are grouped in pairs so that it is possible to introduce mutexes for colliding
movements discovered in previous steps.

Algorithm 3 shows the main loop of SMT-CBSR. The algorithm checks if
there is a solution for ΣR of makespan µ and sum-of-costs ξ. It starts at the
lower bound for µ and ξ obtained as the duration of the longest from shortest
individual temporal plans ignoring other agents and the sum of these lengths
respectively.
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K = 3).
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Fig. 8. Comparison of SMT-CBSR and CCBS on ost003d. SMT-CBSR is fastest for
K = 3 but for higher K the performance decreases significantly.

Then µ and ξ are iteratively increased in the main loop following the style of
SATPlan [12]. The algorithm relies on the fact that the solvability of MAPFR

w.r.t. cumulative objective like the sum-of-costs or makespan behaves as a non
decreasing function. Hence trying increasing makespan and sum-of-costs even-
tually leads to finding the optimum provided we do not skip any relevant value.

We need to ensure important property in the makespan/sum-of-costs increas-
ing scheme: any solution of sum-of-costs ξ has the makespan of at most µ. The
next sum-of-costs to try is be obtained by taking the current sum-of-costs plus
the smallest duration of the continuing movement (lines 17-27 of Algorithm 6).

The following proposition is a direct consequence of soundness of CCBS and
soundness of the encoding (Proposition ??) and soundness of the makespan/sum-
of-costs increasing scheme (proof omitted).

Proposition 1. The SMT-CBSR algorithm returns sum-of-costs optimal solu-
tion for any solvable MAPFR instance ΣR.

5 Evaluation of the Sum-of-Costs Optimal Variant

The sum-of-costs optimal version of SMT-CBSR and CCBS were tested on
benchmarks from the movingai.com collection [26]. We tested algorithms on
three categories of benchmarks:
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(i) small empty grids (presented representative benchmark empty-16-16),
(ii) medium sized grids with regular obstacles (presented maze-32-32-4),
(iii) large game maps (presented ost003d, a map from Dragon Age game).

In each benchmark, we interconnected cells using the 2K-neighborhood [20]
for K = 3, 4, 5 - the same style of generating benchmarks as used in [2] (K = 2
corresponds to MAPF hence not omitted). Instances consisting of k agents were
generated by taking first k agents from random scenario files accompanying
each benchmark on movingai.com. Having 25 scenarios for each benchmarks
this yields to 25 instances per number of agents.

Part of the results obtained in our experimentation is presented in this sec-
tion7. For each presented benchmark we show success rate as a function of the
number of agents. That is, we calculate the ratio out of 25 instances per number
of agents where the tested algorithm finished under the timeout of 120 seconds.
In addition to this, we also show concrete runtimes sorted in the ascending order.
Results for one selected representative benchmark from each category are shown
in Figures 6, 7, and 8.

The observable trend is that the difficulty of the problem increases with
increasing size of the K−neighborhood with notable exception of maze-32-32-4
for K = 4 and K = 5 which turned out to be easier than K = 3 for SMT-CBSR.

Throughout all benchmarks SMT-CBSR tends to outperform CCBS. The
dominance of SMT-CBSR is most visible in medium sized benchmarks. CCBS
is, on the other hand, faster in instances containing few agents. The gap between
SMT-CBSR and CCBS is smallest in large maps where SMT-CBSR struggles
with relatively big overhead caused by the big size of the map (the encoding is
proportionally big). Here SMT-CBSR wins only in hard cases.

6 Discussion and Conclusion

We extended the approach based on satisfiability modulo theories (SMT) for solv-
ing MAPFR from the makespan objective (described in the conference version of
the paper [30]) towards the sum-of-costs objective. Our approach builds on the
idea of treating constraints lazily as suggested in the CBS algorithm but instead
of branching the search after encountering a conflict we refine the propositional
model with the conflict elimination disjunctive constraint as it has been done in
previous application of SMT in the standard MAPF. Bounding the sum-of-costs
is done in similar lazy way through introducing nogoods incrementally. If it is
detected that a conflict free solution exceeds given cost bound then decisions
that jointly induce cost greater than given bound are forbidden via a nogood
(that is, at least one of these decisions must not be taken). As nogoods storing
all possible nogoods representing cases when the cost bound is exceeded could be
inefficient, we introduce a concept of nogood dominance. It is sufficient to store
important nogoods only while all dominated nogoods are enforced automatically.

7 All experiments were run on a system with Ryzen 7 3.0 GHz, 16 GB RAM, under
Ubuntu Linux 18.
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SMT-CBSR was compared with CCBS [2], currently the only alternative
algorithm for MAPFR that modifies the standard CBS algorithm, on a number
of benchmarks. The outcome of our comparison is that SMT-CBSR performs
well against CCBS. The best results SMT-CBSR are observable on medium sized
benchmarks with regular obstacles. We attribute the better runtime results of
SMT-CBSR to more efficient handling of disjunctive conflicts in the underlying
SAT solver through propagation, clause learning, and other mechanisms. On the
other hand SMT-CBSR is less efficient on large instances with few agents.

The important restriction which our concept rely on is that agents cannot
move completely freely in the continuous space. We strongly assume that agents
only move on the fixed embedding of finite graph G = (V,E) into some contin-
uous space where vertices are assigned points and edges are assigned curves on
which the definition of smooth movement is possible. Hence for example using
curves other than straight lines for interconnecting vertices does not change the
high-level SMT-CBSR.

We plan to extend the RDD generation scheme to directional agents where
we need to add the third dimension in addition to space (vertices) and time:
direction (angle). The work on MAPFR could be further developed into multi-
robot motion planning in continuous configuration spaces [14].
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