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Abstract. The problem of mesh matching is addressed in this work.
For a given n-sided planar region bounded by one loop of n polylines
we are selecting optimal quadrilateral mesh from existing catalogue of
meshes. The formulation of matching between planar shape and quadri-
lateral mesh from the catalogue is based on the problem of finding longest
common subsequence (LCS). Theoretical foundation of mesh matching
method is provided. Suggested method represents a viable technique
for selecting best mesh for planar region and stepping stone for further
parametrization of the region.
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1 Introduction and Motivation

Finding a quadrilateral mesh that matches a given shape - a so called mesh
matching problem - represents an important problem in computer aided design,
[2], [B], [7], and [I1]. The task is specified by user input which describes planar
shape to be covered with quadrilateral mesh. In this work we consider only
simply connected planar domains which need to be filled by quadrilateral mesh.
The planar shape is represented by its boundary drawn in plane typically. In
addition to this, the size of mesh, that is, the number of its vertices, is specified
by the user as well.

There are many ways how to cover the given shape with a mesh as even single
mesh can be matched to the shape in many ways. Moreover there are many
non-isomorphic meshes of given number of vertices which makes the problem of
finding appropriate mesh for given shape hard. An example of two matchings
of different quality between user input and quadrilateral meshes is provided in
Figure [T}

Trying to find a suitable matching between the shape and a mesh in an
intuitive way by evaluating all the possible coverings would quickly lead to com-
binatorial explosion as there is exponential number of such covering. We were
trying to mitigate this difficulty by finding an appropriate concept from com-
puter science that can be used for reasoning about the mesh matching problem
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in a more efficient way. Our finding is that the concept of longest common sub-
sequence (LCS) [I], [6] can be employed in mesh matching problem to avoid
the combinatorial explosion. Given an objective function for measuring quality
of matching, the suitable application of the LCS algorithm would automatically
prune out coverings of the input shape by mesh that have no chance to maximize
the objective function. Hence instead of dealing with the exponential number of
coverings the algorithm goes directly to the optimal one in polynomial number
of steps.

In this article we for the first time describe concept of mesh matching to a
given planar shape in the formal mathematical way. Having the precise math-
ematical formulation of the problem we could describe objective function that
corresponds to the quality of matching. We also designed a computationally ef-
ficient method for mesh selection which is optimal with respect to the matching
quality objective. Our method generalizes the common problem of LCS. In con-
trast to the original LCS, where only the relation of equality between symbols is
considered, we allow more general relations between symbols that reflects various
cases that arise in mesh matching problem.

Fig. 1. Two examples of quadrilateral meshes for user input on the left. The first mesh
expresses the shape of user input better than the second mesh. First mesh has lower
valences of boundary vertices in convex vertices of user input and higher valences in
concave vertices. The various valences of boundary vertices have different color.

2 Background

A quadrilateral mesh, [3], [10], [13] is a triple (V, E, Q) where V is a set of vertices,
FE is a set of edges, and @ is a set of quadrilaterals. There exists an embedding
of (V, E, Q) into 2D plane such that each vertex is assigned a point in the plane
and each edge is assigned a curve in the plane, so that curves connect vertices
and each quad is represented in the plane as a quadrilateral. In our study we
furthermore assume only quadrilateral meshes that form a connected, conforming
(i.e. free from T-junctions), orientable 2D manifold with boundary, [3], [0, i.e.
our quadrilateral meshes are defined for segmentation of simply connected planar
domains.

Regarding the terminology, an edge of the mesh with two incident quads
is said to be internal, while an edge with just one incident quad is said to be
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boundary. A vertex of an internal edge is also said to be internal, otherwise it is
said to be boundary. The valence of a vertex is the number of edges incident to
that vertex.

2.1 Existing Catalogues of Meshes

Our work considers the existing context of literature and software in geometry
and computer aided design. Extensive works on providing catalogue of meshes
of various sizes had been done previously, [4], [13]. Our approach in this work
is to integrate our mesh selection method with existing mesh catalogue that is
kept as a database generated by procedural algorithm - that is, our method will
select the optimal mesh out of the catalogue of meshes.

The catalogue of meshes which we use as the input for our selection method
consists of quadrilateral meshes of certain class and was generated in the previous
work, [I3]. Without constraints, the number of possible meshes is too high. Thus,
we consider only valences < 5 for the both boundary and internal vertices which
represents standard restriction for numerical applications [8] and what is used
in related literature [12], [14].

The quadrilateral meshes in the catalogue furthermore satisfy the following
invariant:

(I) At least one vertex of each internal edge is internal.

Procedural mesh catalogue generates exponential number of meshes with
respect to the number of internal vertices of mesh, i.e. the number of internal
vertices is specified as the input. Hence, our mesh selection method should make
a consideration about matching of a single mesh very quickly to be able to find
suitable mesh for given shape in reasonable time. More precisely, we cannot
afford to perform any kind of exponential time search or other time consuming
operation.

3 Longest Common Subsequence Problem

The most simplified version of the longest common subsequence problem consists
in finding common subsequence within given two sequences of symbols. Infor-
mally said, the task is to delete some symbols in given two sequences so that
the resulting sequences - called common subsequences - will be the same. The
objective is to obtain as long as possible sequences at the end (in other words
we want to make as few as possible symbol deletions) - that is, longest common
subsequences.

Consider a simple examle of two strings (set of symbols correspond to latin
alphabet) "alpha" and "aleph". These two sequences are obviously different
but after deleting last ’a’ in the first sequence and middle ’e’ in the second
string we obtain "alph" in both cases which is the longest common subsequence
for this example.
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The very positive aspect about the LCS problem is that a variety of efficient
(polynomial time) algorithms exist that solve this optimization problem, [I5],
[16].

3.1 Application in Shape Matching

Low time complexity makes LCS algorithms good candidates for using them as a
basis for consideration about mesh matching. However, mesh matching problem
and LCS problem are completely different concepts hence we need to show first
what are the similarities between these problems.

When a user specifies his planar shape we can regard his input as an abstract
information that can be annotated by a sequence of symbols. Information about
the length of edges of the boundary, which vertices on the boundary are convexz,
which are concave can be read from the input. Such information can be encoded
into a sequence of symbols.

At the same time, we need to annotate boundaries of meshes stored in the
catalogue using a sequence of symbols in correspondence with annotation of
inputs. There is considerable discrepancy between user inputs in the form of
planar shapes and representation of meshes in existing catalogues - most cata-
logues represent meshes in the abstract form as list of quadrilaterals and their
interconnections. Moreover we need to reflect certain level of flexibility of mesh
matching with respect to given shape - a mesh may be matched to the shape in
a not ideal way while no better matching is possible.

We therefore introduce lattice of classification of mesh boundary vertices with
respect to properties of convexity, concavity, and others. Unlike in the case of
standard LCS where we compare a pair of symbols whether they are same or
not, here we are more flexible. When we compare a vertex from user input shape
with a boundary vertex of mesh from the catalogue, the quality of matching
between these two vertices is determined by the lattice. For example if a convex
point from user input is being compared with a vertex from mesh, then lattice for
classification of convex vertices is used to determine the quality of correspondence
between the two (the lattice thus provide classification from complete match
between convex and convex point to complete mismatch between conver and
concave point).

This operation of comparison between a point from user input and a bound-
ary vertex of a mesh comes as a parameter to an LCS algorithm instead of
standard equality between symbols. The output of the algorithm hence will be
pair of sequences whose symbols at corresponding positions represent best pos-
sible match according to the lattice. When this output is interpreted back to
the world of geometry we have an optimal matching of a given mesh from cat-
alogue to the given user input. Hence we are able to select optimal mesh from
the catalogue provided that consideration about the single mesh is fast enough.

The method works for fixed starting point in a testing quadrilateral mesh
which is compared to fixed point in the given user input. For finding an optimal
matching between the user input and a mesh from the catalogue we consider
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all rotation of a testing mesh, i.e. for fixed point in the user input we test all
possible starting points in a mesh. This approach is illustrated in Figure 2]

Fig. 2. An example of mesh matching between one quadrilateral mesh from the cat-

alogue and user input. Point in the user input is fixed and the rotations of mesh are
considered.

4 Optimal Mesh Selection Method

Our basic mesh matching method assumes a catalogue of meshes represented as
a list of interconnected quadrilaterals. The user input given as a planar shape is
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further processed and is assigned a sequence of boundary points. We distinguish
three types of boundary vertices, see Figure [3}

— straight point - denoted by symbol s
— convex point - denoted by symbol z
— concave point - denoted by symbol v

Conver and concave points are extracted naturally from the user defined
input planar shape. Straight points are assigned to lines of the boundary of
shape. That is, each line is assigned certain number of internal straight points
according to its length. Longer boundary line have more internal straight vertices.

=
09
=

Fig. 3. Three types of boundary vertices in the given user input.

As meshes in the catalogue are represented in the abstract way there is
not much information available from which a corresponding annotation can be
constructed. The only usable information about meshes are valences of their
boundary vertices which in case of quadrilateral meshes are from the range
2,3,4,5. To further increase amount of information about a given boundary
vertex we also consider valences of its neighbors which allows us to determine
which vertex is more likely conver or which vertex is more likely concave.

Intuitively convex boundary vertices have low valence while their neighbors
have high valence. To be able to formalize this likeliness to be straight, convex,
or concave point we introduce a lattice for each type of point. Figure [5| shows
a suggested lattice for convexr point in the given user input. Some triples of
valences of boundary points in the lattice are weeded out because they cannot
occur in our certain class of meshes. The lattices for concave and straight points
are designed analogically.

The higher the vertex is classified within the lattice the more likely it can be
matched to a conver point on the user input. The design of lattice is a matter
of careful consideration of visual appearance of matching and experience of the
expert designer. Furthermore, each level of lattice is assigned an integer weight
that will be reflected by the modified LCS algorithm when comparing symbol
from the input sequence with mesh boundary vertex. Positive weights represent
likeliness of match between points while negative values stand for likeliness of
mismatch. Absolute value of the weight represent measure of match or mismatch.
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A special weight —oo is reserved to denote complete mismatch between the pair
of vertices (this corresponds to disequality between symbols in the standard LCS
algorithm).

Our modified LCS algorithm assumes two input sequences of symbols - the
first from user input; the second obtained by annotating mesh from the catalogue.
The symbols of the second sequence have the following format of triples: [u, v, w]
where v € 2,3,4,5 is a valence of mesh boundary vertex, and u,w € 2,3,4,5 are
valences of counter-clock-wise and clock-wise neighbors of v respectively.

Weights are assigned to triples|u, v, w] by weight functions. Formally we in-
troduce a weight function for each type of point. That is, we have functions:

W, Wy, Wy {2,3,4,5}3 — ZU{—0o0}

which assigns triples of valences their weights with respect to the lattice for
straight, convex, and concave point, respectively, see an example in Figure [
These weight fuctions are used by the modified LCS algoritm when it is making
comparing a pair of symbols (first one from the first sequnce second one from
the second sequence).

1. 2. ) 3.

w,([3,2,3]) =3

Fig. 4. An example of weights of selected mesh boundary vertex with respect to the
fine-grained lattice for convez point.

We omit implementation details of the modified LCS algorithm for the sake
of brevity. However, important high level specialty of our version of LCS is that
it assumes the length of the first sequence to be at least the length of the second
sequence. Moreover, deletions of symbols can be made from the first sequence
only (from the user input). It is natural assumption as we want to match all the
vertices of the catalogue mesh to some point in the user defined shape.

The two sequences of the same length are valuated by a utility which is calcu-
lated as the sum of weights of symbols from the second sequence with respect to
lattices corresponding to respective symbols from the first sequence. The task of
our modified LCS algorithm is to compute longest common subsequence out of
given user defined input sequence (the first sequence) with the highest possible
utility.
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Formally we define overall utility function of a pair of sequences of symbols
discussed above as follows

n

F([s15-8n], [[u1,v1, w1], .. [Un, Vn, wy]]) = Zw(sm [us, vi, w;])
=1
where
ws([u%viawi}% lf S;i =8
w(Sn[umvi,wiD = wx([ui,vi,wi), if S;i =X
wy([wi, vi, w;) ifs;=v

The algorithm finds a sequence [s1,...s,] for the input pair of sequences
[s),...s,] and [[ug,v1,w1],...[tn, Vn, w,] where n < m so that [sq1,...5,] is a sub-

m
sequence of [s,...s),] and its f value is maximum.

4.1 Design of Lattices

The design of lattice is a matter of experience of the expert designer. We sug-
gested a lattice for each type of point in the user input. Our lattices are fine-
grained so they enable to evaluate mesh matching more precisely than coarse
lattices. An example of coarse lattice for convez point is shown in Figure [6] and
an example of coarse lattice for straight point is shown in Figure

Note that occurrence of —oo represents strict impossibility to match a point
of given type from user input (corresponds to the type of lattice) to a vertex
from a mesh. If the LCS algorithm cannot find a correspondence between point
from the user input and some mesh vertex so that utility other than —oo is
assigned to that correspondence the point must be treated as deleted by the
LCS algorithm. This is the only case when LCS performs deletion from some of
its input sequences.

4.2 Properties of the Method

Clearly as LCS algorithms are optimal in their nature our modified algorithm
enables finding optimal match between used defined shape and mesh from the
catalogue with respect to given objective function optimally. Moreover the algo-
rithm requires polynomial time and space which makes it an excellent candidate
for selecting a mesh with the best match for the given user input.

5 Conclusions and Future Work

A new approach for finding a quadrilateral mesh from the catalogue of quadrilat-
eral meshes of certain class that matches a given user input was described in this
work. The method conceptually builds on the known problem of finding longest
common subsequence (LCS). As LCS and mesh matching are fundamentally dif-
ferent problems we proposed a series of techniques that allow us to transform
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mesh matching problem to LCS. These techniques include adaptation of the LCS
algorithm and introduction of symbol comparison based on lattices that model
likelihood of correspondence between user input points and mesh vertices.

The theoretical foundation of a method is provided. The major contribution
is that viewing mesh matching problem through the concept of LCS allows miti-
gating the combinatorial complexity. Instead of evaluating all possible matchings
between the user input and a mesh from the catalogue in the exponential time,
the adapted LCS algorithm rules out partial matchings as early as possible if
they turn out not to be optimal which leads eventually to the polynomial time.

In the future work we will focus on experimental evaluation which will be
targeted on visual comparison of match matching obtained using fine-grained
and coarse lattices. The interconnection of the mesh matching algorithm and
the procedural catalogue is planned too.

Another interesting topic for the future work is to develop new techniques
for evaluation best mesh according to the distribution of internal vertices.
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1. layer, weight = 8
2. layer, weight = 7
3. layer, weight =6
4. layer, weight =5
5. layer, weight = 4
6. layer, weight = 3
7. layer, weight = 2
8. layer, weight = 1
9. layer, weight =0
10. layer, weight = -1
11. layer, weight = -2
12. layer, weight = -3
13. layer, weight = -4
14. layer, weight = -5
15. layer, weight = -6
16. layer, weight = -7
17. layer, weight = -8

18. layer, weight = -9

19. layer, weight = -10
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(23] [524]
(525] [a24]
G25]  [523]
3] [24] [133] [343] [223] [5]
Gas] [224] [323]

<] e <] [
37 (23] [355] [54] [233] [5]
5] a3 [saa]  [5a3)

[234] [345] 523 ] [532] [543] [432]

[2,33] [344] |554] [455] [443] [332]

|145| |542|

[232]  [343] [a54]

l244] [s53] [355] [442]

|&a4||za5||L43||142||552||433|

[2e2]  [553]
[52] [234]
2] [253]

Fig. 5. Suggested lattice for convex point in the given user input.
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Llayer,weight=1 [5,2,5] [4,25] [524] [424] [523] [325]

7] 3] 23] [24] [322] [35)
B

[535] [435]| [534] [434] [533] [335]

[5.4,5] [544] [445]

2. layer, weight =0 |>2Q| | 3,3,3| |4,4,4| | 5,5,5|

3 layer, weight=-1 | 2,3,2||2,3,3][3,32][234|[432]|[235][53>

[2.42] [243] [342] [244] [442] [245]

|a¢2||1m3||&44||443||1¢5||54ﬂ

[2,52] [253] [352] [254] [452] [255]

|552||1a3||154||¢53||&55||55ﬂ

l4,54] |455] [554]

Fig. 6. An example of coarse lattice for convex point in the given user input.
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1. layer, weight = 1 |>Q| | 3,33 | | 4,4,4 | | 55,5 |

2 layer, weight =0 | 5,2,5| [4,25] |524] [4,24] [523] [325]

|112||L&3||112||L&4||&&2||L&5||&&2|

[535] [435]| [534] [434] [533] [335]

|a¢5||544||mm5|

o= [57] [5] [323] [324] [323] [57]
=] ] <]

[2,42] [2,43] [342] [2,44] [442] [245]

|am2||143||&44||mm3||145||54ﬂ

|zaz||zas||152||La4||452||15ﬂ

|552] [353] |354] [453] [355] [553]

|m54||455||aa4|

Fig. 7. An example of coarse lattice for straight point in the given user input.
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